Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Eur J Cancer ; 185: 105-118, 2023 05.
Article in English | MEDLINE | ID: mdl-36972661

ABSTRACT

BACKGROUND: Several studies have reported the association of germline BRCA2 (gBRCA2) mutations with poor clinical outcomes in prostate cancer (PCa), but the impact of concurrent somatic events on gBRCA2 carriers survival and disease progression is unknown. PATIENTS AND METHODS: To ascertain the role of frequent somatic genomic alterations and histology subtypes in the outcomes of gBRCA2 mutation carriers and non-carriers, we correlated the tumour characteristics and clinical outcomes of 73 gBRCA2 and 127 non-carriers. Fluorescent in-situ hybridisation and next-generation sequencing were used to detect copy number variations in BRCA2, RB1, MYC and PTEN. Presence of intraductal and cribriform subtypes was also assessed. The independent impact of these events on cause-specific survival (CSS), metastasis-free survival and time to castration-resistant disease was assessed using cox-regression models. RESULTS: Somatic BRCA2-RB1 co-deletion (41% versus 12%, p < 0.001) and MYC amplification (53.4% versus 18.8%, p < 0.001) were enriched in gBRCA2 compared to sporadic tumours. Median CSS from diagnosis of PCa was 9.1 versus 17.6 years in gBRCA2 carriers and non-carriers, respectively (HR 2.12; p = 0.002), Median CSS in gBRCA2 carriers increased to 11.3 and 13.4 years in the absence of BRCA2-RB1 deletion or MYC amplification, respectively. Median CSS of non-carriers decreased to 8 and 2.6 years if BRCA2-RB1 deletion or MYC amplification were detected. CONCLUSIONS: gBRCA2-related prostate tumours are enriched for aggressive genomic features, such as BRCA2-RB1 co-deletion and MYC amplification. The presence or absence of these events modify the outcomes of gBRCA2 carriers.


Subject(s)
DNA Copy Number Variations , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/pathology , BRCA2 Protein/genetics , Heterozygote , Mutation , Germ Cells/pathology , Germ-Line Mutation
2.
Transl Res ; 253: 68-79, 2023 03.
Article in English | MEDLINE | ID: mdl-36089245

ABSTRACT

Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among men. Consequently, the identification of novel molecular targets for treatment is urgently needed to improve patients' outcomes. Our group recently reported that some elements of the cellular machinery controlling alternative-splicing might be useful as potential novel therapeutic tools against advanced PCa. However, the presence and functional role of RBM22, a key spliceosome component, in PCa remains unknown. Therefore, RBM22 levels were firstly interrogated in 3 human cohorts and 2 preclinical mouse models (TRAMP/Pbsn-Myc). Results were validated in in silico using 2 additional cohorts. Then, functional effects in response to RBM22 overexpression (proliferation, migration, tumorspheres/colonies formation) were tested in PCa models in vitro (LNCaP, 22Rv1, and PC-3 cell-lines) and in vivo (xenograft). High throughput methods (ie, RNA-seq, nCounter PanCancer Pathways Panel) were performed in RBM22 overexpressing cells and xenograft tumors. We found that RBM22 levels were down-regulated (mRNA and protein) in PCa samples, and were inversely associated with key clinical aggressiveness features. Consistently, a gradual reduction of RBM22 from non-tumor to poorly differentiated PCa samples was observed in transgenic models (TRAMP/Pbsn-Myc). Notably, RBM22 overexpression decreased aggressiveness features in vitro, and in vivo. These actions were associated with the splicing dysregulation of numerous genes and to the downregulation of critical upstream regulators of cell-cycle (i.e., CDK1/CCND1/EPAS1). Altogether, our data demonstrate that RBM22 plays a critical pathophysiological role in PCa and invites to suggest that targeting negative regulators of RBM22 expression/activity could represent a novel therapeutic strategy to tackle this disease.


Subject(s)
Alternative Splicing , Prostatic Neoplasms , Male , Humans , Animals , Mice , Alternative Splicing/genetics , Prostatic Neoplasms/metabolism , RNA Splicing , Spliceosomes , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic
3.
Cancers (Basel) ; 13(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066080

ABSTRACT

Circulating tumor cell (CTC) enumeration and changes following treatment have been demonstrated to be superior to PSA response in determining mCRPC outcome in patients receiving AR signaling inhibitors but not taxanes. We carried out a pooled analysis of two prospective studies in mCRPC patients treated with docetaxel. CTCs were measured at baseline and 3-6 weeks post treatment initiation. Cox regression models were constructed to compare 6-month radiographical progression-free survival (rPFS), CTCs and PSA changes predicting outcome. Among the subjects, 80 and 52 patients had evaluable baseline and post-treatment CTC counts, respectively. A significant association of higher baseline CTC count with worse overall survival (OS), PFS and time to PSA progression (TTPP) was observed. While CTC response at 3-6 weeks (CTC conversion (from ≥5 to <5 CTCs), CTC30 (≥30% decline in CTC) or CTC0 (decline to 0 CTC)) and 6-month rPFS were significantly associated with OS (all p < 0.005), the association was not significant for PSA30 or PSA50 response. CTC and PSA response were discordant in over 50% of cases, with outcome driven by CTC response in these patients. The c-index values for OS were superior for early CTC changes compared to PSA response endpoints, and similar to 6-month rPFS. Early CTC declines were good predictors of improved outcomes in mCRPC patients treated with docetaxel in this small study, offering a superior and/or earlier estimation of docetaxel benefit in comparison to PSA or rPFS that merits further confirmation in larger studies.

4.
Eur J Cancer ; 147: 74-83, 2021 04.
Article in English | MEDLINE | ID: mdl-33626496

ABSTRACT

BACKGROUND: Intraductal (IDC) and cribriform (CRIB) histologies in prostate cancer have been associated with germline BRCA2 (gBRCA2) mutations in small retrospective series, leading to the recommendation of genetic testing for patients with IDC in the primary tumour. PATIENTS AND METHODS: To examine the association of gBRCA2 mutations and other tumour molecular features with IDC and/or cribriform (CRIB) histologies, we conducted a case-control study in which primary prostate tumours from 58 gBRCA2 carriers were matched (1:2) by Gleason Grade Group and specimen type to 116 non-carriers. Presence/absence of IDC and CRIB morphologies was established by two expert uropathologists blinded to gBRCA2 status. Fluorescent in-situ hybridization (FISH) and next-generation sequencing (NGS) were used to detect BRCA2 alterations, PTEN deletions and TMPRSS2-ERG fusions. Chi-squared tests were used to compare the frequency of IDC and CRIB in gBRCA2 carriers and controls and to assess associations with other variables. Logistic regression models were constructed to identify independent factors associated with both histology patterns. RESULTS: No significant differences between gBRCA2 carriers and non-carriers were observed in the prevalence of IDC (36% gBRCA2 versus 50% non-carriers, p = 0.085) or CRIB (53% gBRCA2 versus 43% non-carriers p = 0.197) patterns. However, IDC histology was independently associated with bi-allelic BRCA2 alterations (OR 4.3, 95%CI 1.1-16.2) and PTEN homozygous loss (OR 5.2, 95%CI 2.1-13.1). CRIB morphology was also independently associated with bi-allelic BRCA2 alterations (OR 5.6, 95%CI 1.7-19.3). CONCLUSIONS: While we found no association between gBRCA2 mutations and IDC or CRIB histologies, bi-allelic BRCA2 loss in primary prostate tumours was significantly associated with both variant morphologies, independently of other clinical-pathologic factors.


Subject(s)
BRCA2 Protein/genetics , Biomarkers, Tumor/genetics , Mutation , Prostatic Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , DNA Mutational Analysis , Gene Deletion , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Neoplasm Grading , PTEN Phosphohydrolase/genetics , Phenotype , Prostatic Neoplasms/pathology , Risk Assessment , Risk Factors , Spain
5.
Br J Cancer ; 124(3): 552-563, 2021 02.
Article in English | MEDLINE | ID: mdl-33106584

ABSTRACT

Over the past years, several studies have demonstrated that defects in DNA damage response and repair (DDR) genes are present in a significant proportion of patients with prostate cancer. These alterations, particularly mutations in BRCA2, are known to be associated with an increased risk of developing prostate cancer and more aggressive forms of the disease. There is growing evidence that certain DDR gene aberrations confer sensitivity to poly-(ADP ribose) polymerase inhibitors and/or platinum chemotherapy, while other defects might identify cases that are more likely to benefit from immune checkpoint inhibition. The potential prognostic impact and relevance for treatment selection together with the decreasing costs and broader accessibility to next-generation sequencing have already resulted in the increased frequency of genetic profiling of prostate tumours. Remarkably, almost half of all DDR genetic defects can occur in the germline, and prostate cancer patients identified as mutation carriers, as well as their families, will require appropriate genetic counselling. In this review, we summarise the current knowledge regarding the biology and clinical implications of DDR defects in prostate cancer, and outline how this evidence is prompting a change in the treatment landscape of the disease.


Subject(s)
DNA Damage/genetics , DNA Repair/genetics , Precision Medicine , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Ataxia Telangiectasia Mutated Proteins/genetics , Clinical Trials as Topic , DNA Damage/physiology , DNA Repair/physiology , Genes, BRCA1 , Genes, BRCA2 , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , Immune Checkpoint Inhibitors/therapeutic use , Indazoles/therapeutic use , Indoles/therapeutic use , Male , Phthalazines/therapeutic use , Piperazines/therapeutic use , Piperidines/therapeutic use , Platinum Compounds/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prognosis
6.
Sci Transl Med ; 12(565)2020 10 14.
Article in English | MEDLINE | ID: mdl-33055241

ABSTRACT

Intratumoral therapies, especially Toll-like receptor agonists, can trigger both the innate and adaptive immune systems. BO-112 is a nanoplexed form of polyinosinic:polycytidylic acid (poly I:C) that induces local and systemic immunotherapeutic effects in mouse models. In a multicenter phase 1 clinical trial, repeated intratumoral administrations of BO-112 induced an increase in tumor cell necrosis and apoptosis, as well as augmented immune reactivity according to gene expression profiling. The first three cohorts receiving BO-112 as a monotherapy resulted in a recommended dose of 1 mg that could be safely repeated. Two grade 3 to 4 adverse reactions in the form of reversible thrombocytopenia were reported. In a fourth cohort of 28 patients with tumors that had primary resistance to anti-programmed cell death protein-1 (PD-1), the combination of intratumoral BO-112 with nivolumab or pembrolizumab was also well tolerated, and 3 patients (2 with melanoma and 1 with renal cell carcinoma) achieved partial responses, with 10 more patients having stable disease at 8 to 12 weeks. Thus, local BO-112 combined with a systemic anti-PD-1 agent might be a strategy to revert anti-PD-1 resistance.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Melanoma , Animals , Humans , Melanoma/drug therapy , Mice , Nivolumab/therapeutic use , Poly I
7.
Sci Transl Med ; 12(565)2020 10 14.
Article in English | MEDLINE | ID: mdl-33055240

ABSTRACT

Defects in tumor-intrinsic interferon (IFN) signaling result in failure of immune checkpoint blockade (ICB) against cancer, but these tumors may still maintain sensitivity to T cell-based adoptive cell therapy (ACT). We generated models of IFN signaling defects in B16 murine melanoma observed in patients with acquired resistance to ICB. Tumors lacking Jak1 or Jak2 did not respond to ICB, whereas ACT was effective against Jak2 KO tumors, but not Jak1 KO tumors, where both type I and II tumor IFN signaling were defective. This was a direct result of low baseline class I major histocompatibility complex (MHC I) expression in B16 and the dependency of MHC I expression on either type I or type II IFN signaling. We used genetic and pharmacologic approaches to uncouple this dependency and restore MHC I expression. Through independent mechanisms, overexpression of NLRC5 (nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 5) and intratumoral delivery of BO-112, a potent nanoplexed version of polyinosinic:polycytidylic acid (poly I:C), each restored the efficacy of ACT against B16-Jak1 KO tumors. BO-112 activated double-stranded RNA (dsRNA) sensing (via protein kinase R and Toll-like receptor 3) and induced MHC I expression via nuclear factor κB, independent of both IFN signaling and NLRC5. In summary, we demonstrated that in the absence of tumor IFN signaling, MHC I expression is essential and sufficient for the efficacy of ACT. For tumors lacking MHC I expression due to deficient IFN signaling, activation of dsRNA sensors by BO-112 affords an alternative approach to restore the efficacy of ACT.


Subject(s)
Antigen Presentation , Interferon-gamma , Animals , Humans , Immunotherapy , Intracellular Signaling Peptides and Proteins , Janus Kinase 1 , Mice , NF-kappa B , Signal Transduction
9.
Mol Cancer Ther ; 19(8): 1751-1760, 2020 08.
Article in English | MEDLINE | ID: mdl-32499301

ABSTRACT

Metastasis development is the leading cause of cancer-related mortality in pancreatic ductal adenocarcinoma (PDAC) and yet, few preclinical systems to recapitulate its full spreading process are available. Thus, modeling of tumor progression to metastasis is urgently needed. In this work, we describe the generation of highly metastatic PDAC patient-derived xenograft (PDX) mouse models and subsequent single-cell RNA-sequencing (RNA-seq) of circulating tumor cells (CTC), isolated by human HLA sorting, to identify altered signaling and metabolic pathways, as well as potential therapeutic targets. The mouse models developed liver and lung metastasis with a high reproducibility rate. Isolated CTCs were highly tumorigenic, had metastatic potential, and single-cell RNA-seq showed that their expression profiles clustered separately from those of their matched primary and metastatic tumors and were characterized by low expression of cell-cycle and extracellular matrix-associated genes. CTC transcriptomics identified survivin (BIRC5), a key regulator of mitosis and apoptosis, as one of the highest upregulated genes during metastatic spread. Pharmacologic inhibition of survivin with YM155 or survivin knockdown promoted cell death in organoid models as well as anoikis, suggesting that survivin facilitates cancer cell survival in circulation. Treatment of metastatic PDX models with YM155 alone and in combination with chemotherapy hindered the metastatic development resulting in improved survival. Metastatic PDX mouse model development allowed the identification of survivin as a promising therapeutic target to prevent the metastatic dissemination in PDAC.


Subject(s)
Biomarkers, Tumor/genetics , Liver Neoplasms/secondary , Lung Neoplasms/secondary , Neoplastic Cells, Circulating/pathology , Pancreatic Neoplasms/pathology , Single-Cell Analysis/methods , Transcriptome , Animals , Apoptosis , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/blood , Liver Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Clin Cancer Res ; 26(13): 3420-3430, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32161121

ABSTRACT

PURPOSE: The tumor microenvironment plays a key role in cancer development and progression and is involved in resistance to chemo- and immunotherapy. Cancer-associated fibroblast expressing fibroblast-activating protein α (FAPα) is one of the predominant stroma cell types and is involved in resistance to immunotherapy. EXPERIMENTAL DESIGN: We generated OMTX705, a novel antibody-drug conjugate from a humanized anti-FAP antibody linked to a new cytolysin. Here, we studied its antineoplastic activity in vitro and in preclinical mouse models alone and in combination with chemotherapy as well as immunotherapy in PD-1-resistant tumors. RESULTS: In Avatar models, OMTX705 showed a 100% tumor growth inhibition and prolonged tumor regressions as single agent and in combination with chemotherapy. Treatment rechallenge following treatment discontinuation induced additional tumor regression, suggesting lack of treatment resistance. In a mouse model with a humanized immune system resistant to PD-1 inhibition, OMTX705 increased tumor infiltration by CD8+ T cells, induced complete regressions, and delayed tumor recurrence. CONCLUSIONS: These data suggest that FAP targeting with OMTX705 represents a novel and potent strategy for cancer treatment, including tumors resistant to immunotherapy, and support its clinical development.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Immunoconjugates/pharmacology , Membrane Proteins/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Endopeptidases , Humans , Immunomodulation/drug effects , Mice , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
11.
Cancer Cell ; 37(3): 340-353.e6, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32109375

ABSTRACT

Inhibition of the cell-cycle kinases CDK4 and CDK6 is now part of the standard treatment in advanced breast cancer. CDK4/6 inhibitors, however, are not expected to cooperate with DNA-damaging or antimitotic chemotherapies as the former prevent cell-cycle entry, thus interfering with S-phase- or mitosis-targeting agents. Here, we report that sequential administration of CDK4/6 inhibitors after taxanes cooperates to prevent cellular proliferation in pancreatic ductal adenocarcinoma (PDAC) cells, patient-derived xenografts, and genetically engineered mice with Kras G12V and Cdkn2a-null mutations frequently observed in PDAC. This effect correlates with the repressive activity of CDK4/6 inhibitors on homologous recombination proteins required for the recovery from chromosomal damage. CDK4/6 inhibitors also prevent recovery from multiple DNA-damaging agents, suggesting broad applicability for their sequential administration after available chemotherapeutic agents.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Albumins/administration & dosage , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Repair/drug effects , Drug Administration Schedule , Homologous Recombination/drug effects , Humans , Mice, Nude , Mice, Transgenic , Mutation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Paclitaxel/administration & dosage , Pancreatic Neoplasms/pathology , Piperazines/administration & dosage , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/administration & dosage , Xenograft Model Antitumor Assays
12.
J Immunother Cancer ; 7(1): 116, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31046839

ABSTRACT

Poly I:C is a powerful immune adjuvant as a result of its agonist activities on TLR-3, MDA5 and RIG-I. BO-112 is a nanoplexed formulation of Poly I:C complexed with polyethylenimine that causes tumor cell apoptosis showing immunogenic cell death features and which upon intratumoral release results in more prominent tumor infiltration by T lymphocytes. Intratumoral treatment with BO-112 of subcutaneous tumors derived from MC38, 4 T1 and B16-F10 leads to remarkable local disease control dependent on type-1 interferon and gamma-interferon. Some degree of control of non-injected tumor lesions following BO-112 intratumoral treatment was found in mice bearing bilateral B16-OVA melanomas, an activity which was enhanced with co-treatment with systemic anti-CD137 and anti-PD-L1 mAbs. More abundant CD8+ T lymphocytes were found in B16-OVA tumor-draining lymph nodes and in the tumor microenvironment following intratumoral BO-112 treatment, with enhanced numbers of tumor antigen-specific cytotoxic T lymphocytes. Genome-wide transcriptome analyses of injected tumor lesions were consistent with a marked upregulation of the type-I interferon pathway. Inspired by these data, intratumorally delivered BO-112 is being tested in cancer patients (NCT02828098).


Subject(s)
Interferon Inducers/administration & dosage , Interferon Type I/metabolism , Melanoma, Experimental/drug therapy , Poly I-C/administration & dosage , Tumor Microenvironment/drug effects , Animals , Cell Line, Tumor/transplantation , Drug Screening Assays, Antitumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Injections, Intralesional , Interferon Type I/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Up-Regulation/drug effects
13.
J Control Release ; 294: 154-164, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30529724

ABSTRACT

So far, the success of anticancer nanomedicines has been moderate due to their lack of adequate targeting properties and/or to their difficulties for penetrating tumors. Here we report a multifunctional drug nanocarrier consisting of hyaluronic acid nanocapsules conjugated with the tumor homing peptide tLyp1, which exhibits both, dual targeting properties (to the tumor and to the lymphatics), and enhanced tumor penetration. Data from a 3D co-culture in vitro model showed the capacity of these nanocapsules to interact with the NRP1 receptors over-expressed in cancer cells. The targeting capacity of the nanocapsules was evidenced in orthotopic lung cancer-bearing mice, using docetaxel as a standard drug. The results showed a dramatic accumulation of docetaxel in the tumor (37-fold the one achieved with Taxotere®). This biodistribution profile correlated with the high efficacy shown in terms of tumor growth regression and drastic reduction of metastasis in the lymphatics. When efficacy was validated in a pancreatic patient-derived tumor, the nanocapsule's activity was comparable to that of a dose ten times higher of Abraxane®. Multi-functionality was found to be the key to the success of this new therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Docetaxel/administration & dosage , Drug Carriers/administration & dosage , Hyaluronic Acid/administration & dosage , Lung Neoplasms/drug therapy , A549 Cells , Animals , Antineoplastic Agents/pharmacokinetics , Coculture Techniques , Docetaxel/pharmacokinetics , Drug Carriers/pharmacokinetics , Female , Humans , Hyaluronic Acid/pharmacokinetics , Jurkat Cells , Lung Neoplasms/metabolism , Mice, Nude , Tissue Distribution
14.
Contrast Media Mol Imaging ; 2018: 8382148, 2018.
Article in English | MEDLINE | ID: mdl-30224904

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) continues to be one of the deadliest cancers for which optimal diagnostic tools are still greatly needed. Identification of PDAC-specific molecular markers would be extremely useful to improve disease diagnosis and follow-up. MT1-MMP has long been involved in pancreatic cancer, especially in tumour invasion and metastasis. In this study, we aim to ascertain the suitability of MT1-MMP as a biomarker for positron emission tomography (PET) imaging. Two probes were assessed and compared for this purpose, an MT1-MMP-specific binding peptide (MT1-AF7p) and a specific antibody (LEM2/15), labelled, respectively, with 68Ga and with 89Zr. PET imaging with both probes was conducted in patient-derived xenograft (PDX), subcutaneous and orthotopic, PDAC mouse models, and in a cancer cell line (CAPAN-2)-derived xenograft (CDX) model. Both radiolabelled tracers were successful in identifying, by means of PET imaging techniques, tumour tissues expressing MT1-MMP although they did so at different uptake levels. The 89Zr-DFO-LEM2/15 probe showed greater specific activity compared to the 68Ga-labelled peptide. The mean value of tumour uptake for the 89Zr-DFO-LEM2/15 probe (5.67 ± 1.11%ID/g, n=28) was 25-30 times higher than that of the 68Ga-DOTA-AF7p ones. Tumour/blood ratios (1.13 ± 0.51 and 1.44 ± 0.43 at 5 and 7 days of 89Zr-DFO-LEM2/15 after injection) were higher than those estimated for 68Ga-DOTA-AF7p probes (of approximately tumour/blood ratio = 0.5 at 90 min after injection). Our findings strongly point out that (i) the in vivo detection of MT1-MMP by PET imaging is a promising strategy for PDAC diagnosis and (ii) labelled LEM2/15 antibody is a better candidate than MT1-AF7p for PDAC detection.


Subject(s)
Biomarkers, Tumor/metabolism , Matrix Metalloproteinase 14/metabolism , Pancreatic Neoplasms/metabolism , Positron-Emission Tomography , Animals , Antibodies, Monoclonal/metabolism , Deferoxamine/chemistry , Gallium Radioisotopes , Humans , Mice , Peptides/chemistry , Xenograft Model Antitumor Assays , Zirconium/chemistry
15.
Sci Transl Med ; 10(446)2018 06 20.
Article in English | MEDLINE | ID: mdl-29925635

ABSTRACT

On the basis of clinical trials using first-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), it became a doctrine that V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-RAS) mutations drive resistance to EGFR inhibition in non-small cell lung cancer (NSCLC). Conversely, we provide evidence that EGFR signaling is engaged in K-RAS-driven lung tumorigenesis in humans and in mice. Specifically, genetic mouse models revealed that deletion of Egfr quenches mutant K-RAS activity and transiently reduces tumor growth. However, EGFR inhibition initiates a rapid resistance mechanism involving non-EGFR ERBB family members. This tumor escape mechanism clarifies the disappointing outcome of first-generation TKIs and suggests high therapeutic potential of pan-ERBB inhibitors. On the basis of various experimental models including genetically engineered mouse models, patient-derived and cell line-derived xenografts, and in vitro experiments, we demonstrate that the U.S. Food and Drug Administration-approved pan-ERBB inhibitor afatinib effectively impairs K-RAS-driven lung tumorigenesis. Our data support reconsidering the use of pan-ERBB inhibition in clinical trials to treat K-RAS-mutated NSCLC.


Subject(s)
Afatinib/therapeutic use , Carcinogenesis/pathology , Lung Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Afatinib/pharmacology , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Gefitinib/pharmacology , Gefitinib/therapeutic use , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation/genetics , Signal Transduction/drug effects
16.
Genome Med ; 10(1): 41, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29848362

ABSTRACT

BACKGROUND: Large-sequencing cancer genome projects have shown that tumors have thousands of molecular alterations and their frequency is highly heterogeneous. In such scenarios, physicians and oncologists routinely face lists of cancer genomic alterations where only a minority of them are relevant biomarkers to drive clinical decision-making. For this reason, the medical community agrees on the urgent need of methodologies to establish the relevance of tumor alterations, assisting in genomic profile interpretation, and, more importantly, to prioritize those that could be clinically actionable for cancer therapy. RESULTS: We present PanDrugs, a new computational methodology to guide the selection of personalized treatments in cancer patients using the variant lists provided by genome-wide sequencing analyses. PanDrugs offers the largest database of drug-target associations available from well-known targeted therapies to preclinical drugs. Scoring data-driven gene cancer relevance and drug feasibility PanDrugs interprets genomic alterations and provides a prioritized evidence-based list of anticancer therapies. Our tool represents the first drug prescription strategy applying a rational based on pathway context, multi-gene markers impact and information provided by functional experiments. Our approach has been systematically applied to TCGA patients and successfully validated in a cancer case study with a xenograft mouse model demonstrating its utility. CONCLUSIONS: PanDrugs is a feasible method to identify potentially druggable molecular alterations and prioritize drugs to facilitate the interpretation of genomic landscape and clinical decision-making in cancer patients. Our approach expands the search of druggable genomic alterations from the concept of cancer driver genes to the druggable pathway context extending anticancer therapeutic options beyond already known cancer genes. The methodology is public and easily integratable with custom pipelines through its programmatic API or its docker image. The PanDrugs webtool is freely accessible at http://www.pandrugs.org .


Subject(s)
Antineoplastic Agents/therapeutic use , Computational Biology/methods , Genomics , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine , Computer Simulation , Genome, Human , Humans
17.
Mol Cancer Ther ; 17(5): 966-976, 2018 05.
Article in English | MEDLINE | ID: mdl-29483221

ABSTRACT

In colorectal carcinoma patients, distant metastatic disease is present at initial diagnosis in nearly 25% of them. The majority of patients with metastatic colorectal carcinoma have incurable disease; therefore, new therapies are needed. Agents derived from medicinal plants have already demonstrated therapeutic activities in human cancer cells. Antartina is an antitumor agent isolated from Deschampsia antarctica Desv. This study aimed to evaluate the antitumor properties of Antartina in colorectal carcinoma models. We used human and murine colorectal carcinoma cell lines for investigating proliferation, apoptosis, and cell-cycle effects of Antartina therapy in vitro Avatar and immunocompetent colorectal carcinoma animal models were applied for evaluating the effects of Antartina in vivo Immune response against colorectal carcinoma model was investigated using CTL assay, analyzing dendritic cell activation and intratumor T-cell subpopulation, and by tumor rechallenge experiments. Antartina inhibits in vitro human colorectal carcinoma cell proliferation; however, in vivo experiments in Avatar colorectal carcinoma model Antartina display a limited antitumor effect. In an immunocompetent colorectal carcinoma mice model, Antartina potently inhibited tumor growth and liver metastases, leading to complete tumor regressions in >30% of mice and increased animal survival. In addition, Antartina induced a potent specific cytotoxic T-cell response against colorectal carcinoma and a long-lasting antitumor immunity. Interestingly, Antartina increased tumor immunogenicity and stimulated dendritic cell activation. No toxic effects were observed at the doses employed. Our findings showed that Antartina has the ability to induce antitumor immunity against colorectal carcinoma and can be used to develop new tools for the treatment of colorectal carcinoma. Mol Cancer Ther; 17(5); 966-76. ©2018 AACR.


Subject(s)
Colorectal Neoplasms/drug therapy , Liver Neoplasms/prevention & control , Plant Extracts/pharmacology , Poaceae/chemistry , Xenograft Model Antitumor Assays , Animals , Cell Line, Tumor , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Female , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Male , Mice, Inbred BALB C , Mice, Nude , Phytotherapy/methods , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology
18.
Cancer Cell ; 33(2): 217-228.e4, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29395869

ABSTRACT

A quarter of all solid tumors harbor KRAS oncogenes. Yet, no selective drugs have been approved to treat these malignancies. Genetic interrogation of the MAPK pathway revealed that systemic ablation of MEK or ERK kinases in adult mice prevent tumor development but are unacceptably toxic. Here, we demonstrate that ablation of c-RAF expression in advanced tumors driven by KrasG12V/Trp53 mutations leads to significant tumor regression with no detectable appearance of resistance mechanisms. Tumor regression results from massive apoptosis. Importantly, systemic abrogation of c-RAF expression does not inhibit canonical MAPK signaling, hence, resulting in limited toxicities. These results are of significant relevance for the design of therapeutic strategies to treat K-RAS mutant cancers.


Subject(s)
Adenocarcinoma of Lung/genetics , Genes, ras/genetics , Mutation/genetics , Proto-Oncogene Proteins c-raf/metabolism , ras Proteins/genetics , Animals , Cell Line, Tumor , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics
19.
Clin Cancer Res ; 24(7): 1734-1747, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29330203

ABSTRACT

Purpose: Since drug responses vary between patients, it is crucial to develop pre-clinical or co-clinical strategies that forecast patient response. In this study, we tested whether RNA-based therapeutics were suitable for personalized medicine by using patient-derived-organoid (PDO) and patient-derived-xenograft (PDX) models.Experimental Design: We performed microRNA (miRNA) profiling of PDX samples to determine the status of miRNA deregulation in individual pancreatic ductal adenocarcinoma (PDAC) patients. To deliver personalized RNA-based-therapy targeting oncogenic miRNAs that form part of this common PDAC miRNA over-expression signature, we packaged antimiR oligonucleotides against one of these miRNAs in tumor-penetrating nanocomplexes (TPN) targeting cell surface proteins on PDAC tumors.Results: As a validation for our pre-clinical strategy, the therapeutic potential of one of our nano-drugs, TPN-21, was first shown to decrease tumor cell growth and survival in PDO avatars for individual patients, then in their PDX avatars.Conclusions: This general approach appears suitable for co-clinical validation of personalized RNA medicine and paves the way to prospectively identify patients with eligible miRNA profiles for personalized RNA-based therapy. Clin Cancer Res; 24(7); 1734-47. ©2018 AACR.


Subject(s)
MicroRNAs/genetics , Pancreatic Neoplasms/genetics , Animals , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Gene Expression Profiling/methods , Humans , Mice , Mice, Nude , Oncogenes/genetics , Precision Medicine/methods , Xenograft Model Antitumor Assays/methods , Pancreatic Neoplasms
20.
Public Health Genomics ; 20(2): 81-91, 2017.
Article in English | MEDLINE | ID: mdl-28858862

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death among solid malignancies. Unfortunately, PDAC lethality has not substantially decreased over the past 20 years. This aggressiveness is related to the genomic complexity and heterogeneity of PDAC, but also to the absence of an effective screening for the detection of early-stage tumors and a lack of efficient therapeutic options. Therefore, there is an urgent need to improve the arsenal of anti-PDAC drugs for an effective treatment of these patients. Patient-derived xenograft (PDX) mouse models represent a promising strategy to personalize PDAC treatment, offering a bench testing of candidate treatments and helping to select empirical treatments in PDAC patients with no therapeutic targets. Moreover, bioinformatics-based approaches have the potential to offer systematic insights into PDAC etiology predicting putatively actionable tumor-specific genomic alterations, identifying novel biomarkers and generating disease-associated gene expression signatures. This review focuses on recent efforts to individualize PDAC treatments using PDX models. Additionally, we discuss the current understanding of the PDAC genomic landscape and the putative druggable targets derived from mutational studies. PDAC molecular subclassifications and gene expression profiling studies are reviewed as well. Finally, latest bioinformatics methodologies based on somatic variant detection and prioritization, in silico drug response prediction, and drug repositioning to improve the treatment of advanced PDAC tumors are also covered.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Precision Medicine/methods , Xenograft Model Antitumor Assays , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Computational Biology , Disease Models, Animal , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Genomics , Humans , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...