Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 20: 1220-1223, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30238030

ABSTRACT

In this document, we present the effect of the surface modification of titanium dioxide particles with dicarboxylic acid on the rheological behavior of isotactic polypropylene composites. In addition to evaluating the effect of this type of modified fillers on the crystalline parameters such as long period, crystalline thickness and amorphous thickness, comparing it with unmodified fillers and pure polymer.

2.
J Colloid Interface Sci ; 331(1): 185-90, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19038394

ABSTRACT

We study the confinement of a hydrophilic polymer (polyethylene glycol or PEG) between the bilayers of the zwitterionic surfactant tetradecyldimethyl aminoxide (C(14)DMAO). Small angle X-ray scattering and electron microscopy experiments show that the polymer modifies the physical properties of the lyotropic smectic (L(alpha)) phase. The observed effects are similar to those reported for anchored hydrophobically-modified polymers, indicating a strong interaction between PEG and the C(14)DMAO bilayers. Self-diffusion experiments performed in the lyotropic sponge (L(3)) phase show that the polymer adsorbs onto the surfactant membranes. This adsorption explains earlier observations: high polymer concentrations decrease the Gaussian rigidity of the membranes and a vesicular phase is stabilized.

3.
J Colloid Interface Sci ; 300(1): 105-10, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16678840

ABSTRACT

Dynamic light scattering (DLS) and fluorescence recovery after pattern photobleaching (FRAPP) were used to study the interaction of low molecular weight poly(ethylene glycol) (PEG) with micelles of two different surfactants: tetradecyldimethyl aminoxide (C(14)DMAO, zwitterionic) and pentaethylene glycol n-dodecyl monoether (C(12)E(5), non-ionic). By using an amphiphilic fluorescent probe or a fluorescent-labeled PEG molecule, FRAPP experiments allowed to follow the diffusion of the surfactant-polymer complex either by looking at the micelle diffusion or at the polymer diffusion. Experiments performed with both fluorescent probes gave the same diffusion coefficient showing that the micelles and the polymer form a complex in dilute solutions. Similar experiments showed that PEG interacts as well with pentaethylene glycol n-dodecyl monoether (C(12)E(5)).

4.
Proc Natl Acad Sci U S A ; 103(7): 2098-102, 2006 Feb 14.
Article in English | MEDLINE | ID: mdl-16461891

ABSTRACT

The biological function of transmembrane proteins is closely related to their insertion, which has most often been studied through their lateral mobility. For >30 years, it has been thought that hardly any information on the size of the diffusing object can be extracted from such experiments. Indeed, the hydrodynamic model developed by Saffman and Delbrück predicts a weak, logarithmic dependence of the diffusion coefficient D with the radius R of the protein. Despite widespread use, its validity has never been thoroughly investigated. To check this model, we measured the diffusion coefficients of various peptides and transmembrane proteins, incorporated into giant unilamellar vesicles of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) or in model bilayers of tunable thickness. We show in this work that, for several integral proteins spanning a large range of sizes, the diffusion coefficient is strongly linked to the protein dimensions. A heuristic model results in a Stokes-like expression for D, (D proportional, variant 1/R), which fits literature data as well as ours. Diffusion measurement is then a fast and fruitful method; it allows determining the oligomerization degree of proteins or studying lipid-protein and protein-protein interactions within bilayers.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Phosphatidylcholines/chemistry , Diffusion , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...