Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Annu Rev Immunol ; 42(1): 455-488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38360546

ABSTRACT

Ten-eleven translocation (TET) proteins are iron-dependent and α-ketoglutarate-dependent dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. TET proteins are recruited by transcription factors and by RNA polymerase II to modify 5mC at enhancers and gene bodies, thereby regulating gene expression during development, cell lineage specification, and cell activation. It is not yet clear, however, how the established biochemical activities of TET enzymes in oxidizing 5mC and mediating DNA demethylation relate to the known association of TET deficiency with inflammation, clonal hematopoiesis, and cancer. There are hints that the ability of TET deficiency to promote cell proliferation in a signal-dependent manner may be harnessed for cancer immunotherapy. In this review, we draw upon recent findings in cells of the immune system to illustrate established as well as emerging ideas of how TET proteins influence cellular function.


Subject(s)
DNA Demethylation , Dioxygenases , Immunotherapy , Inflammation , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/etiology , Neoplasms/metabolism , Animals , Inflammation/metabolism , Inflammation/immunology , Immunotherapy/methods , Dioxygenases/metabolism , Immune System/metabolism , Immune System/immunology , Epigenesis, Genetic , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , DNA Methylation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics
2.
Proc Natl Acad Sci U S A ; 120(6): e2214824120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-37406303

ABSTRACT

The three mammalian TET dioxygenases oxidize the methyl group of 5-methylcytosine in DNA, and the oxidized methylcytosines are essential intermediates in all known pathways of DNA demethylation. To define the in vivo consequences of complete TET deficiency, we inducibly deleted all three Tet genes in the mouse genome. Tet1/2/3-inducible TKO (iTKO) mice succumbed to acute myeloid leukemia (AML) by 4 to 5 wk. Single-cell RNA sequencing of Tet iTKO bone marrow cells revealed the appearance of new myeloid cell populations characterized by a striking increase in expression of all members of the stefin/cystatin gene cluster on mouse chromosome 16. In patients with AML, high stefin/cystatin gene expression correlates with poor clinical outcomes. Increased expression of the clustered stefin/cystatin genes was associated with a heterochromatin-to-euchromatin compartment switch with readthrough transcription downstream of the clustered stefin/cystatin genes as well as other highly expressed genes, but only minor changes in DNA methylation. Our data highlight roles for TET enzymes that are distinct from their established function in DNA demethylation and instead involve increased transcriptional readthrough and changes in three-dimensional genome organization.


Subject(s)
Dioxygenases , Leukemia, Myeloid, Acute , Animals , Mice , Heterochromatin/genetics , Euchromatin , DNA Methylation , 5-Methylcytosine/metabolism , Leukemia, Myeloid, Acute/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , Mammals/genetics
3.
Science ; 378(6623): 948-949, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36454845

ABSTRACT

Active DNA demethylation maintains enhancer activity in nonproliferating cells but can damage DNA.


Subject(s)
DNA Breaks, Single-Stranded , DNA Demethylation , Enhancer Elements, Genetic , Macrophages/metabolism , Neurons/metabolism , Humans
4.
Nat Commun ; 13(1): 6230, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266342

ABSTRACT

TET (Ten-Eleven Translocation) dioxygenases effect DNA demethylation through successive oxidation of the methyl group of 5-methylcytosine (5mC) in DNA. In humans and in mouse models, TET loss-of-function has been linked to DNA damage, genome instability and oncogenesis. Here we show that acute deletion of all three Tet genes, after brief exposure of triple-floxed, Cre-ERT2-expressing mouse embryonic stem cells (mESC) to 4-hydroxytamoxifen, results in chromosome mis-segregation and aneuploidy; moreover, embryos lacking all three TET proteins showed striking variation in blastomere numbers and nuclear morphology at the 8-cell stage. Transcriptional profiling revealed that mRNA encoding a KH-domain protein, Khdc3 (Filia), was downregulated in triple TET-deficient mESC, concomitantly with increased methylation of CpG dinucleotides in the vicinity of the Khdc3 gene. Restoring KHDC3 levels in triple Tet-deficient mESC prevented aneuploidy. Thus, TET proteins regulate Khdc3 gene expression, and TET deficiency results in mitotic infidelity and genome instability in mESC at least partly through decreased expression of KHDC3.


Subject(s)
Aneuploidy , DNA-Binding Proteins , Dioxygenases , Mouse Embryonic Stem Cells , Animals , Mice , 5-Methylcytosine/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , DNA/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genomic Instability , Mouse Embryonic Stem Cells/metabolism , Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Messenger/metabolism
6.
J Biosci ; 452020.
Article in English | MEDLINE | ID: mdl-31965999

ABSTRACT

In mammals, DNA methyltransferases transfer a methyl group from S-adenosylmethionine to the 5 position of cytosine in DNA. The product of this reaction, 5-methylcytosine (5mC), has many roles, particularly in suppressing transposable and repeat elements in DNA. Moreover, in many cellular systems, cell lineage specification is accompanied by DNA demethylation at the promoters of genes expressed at high levels in the differentiated cells. However, since direct cleavage of the C-C bond connecting the methyl group to the 5 position of cytosine is thermodynamically disfavoured, the question of whether DNA methylation was reversible remained unclear for many decades. This puzzle was solved by our discovery of the TET (Ten- Eleven Translocation) family of 5-methylcytosine oxidases, which use reduced iron, molecular oxygen and the tricarboxylic acid cycle metabolite 2-oxoglutarate (also known as a-ketoglutarate) to oxidise the methyl group of 5mC to 5-hydroxymethylcytosine (5hmC) and beyond. TET-generated oxidised methylcytosines are intermediates in at least two pathways of DNA demethylation, which differ in their dependence on DNA replication. In the decade since their discovery, TET enzymes have been shown to have important roles in embryonic development, cell lineage specification, neuronal function and cancer. We review these findings and discuss their implications here.


Subject(s)
Cytosine/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation/genetics , Dioxygenases/genetics , 5-Methylcytosine/metabolism , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , DNA Replication/genetics , DNA-Binding Proteins/genetics , Embryonic Development/genetics , Humans , Oxidation-Reduction , S-Adenosylmethionine/metabolism
7.
Proc Natl Acad Sci U S A ; 116(34): 16933-16942, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31371502

ABSTRACT

Cancer genomes are characterized by focal increases in DNA methylation, co-occurring with widespread hypomethylation. Here, we show that TET loss of function results in a similar genomic footprint. Both 5hmC in wild-type (WT) genomes and DNA hypermethylation in TET-deficient genomes are largely confined to the active euchromatic compartment, consistent with the known functions of TET proteins in DNA demethylation and the known distribution of 5hmC at transcribed genes and active enhancers. In contrast, an unexpected DNA hypomethylation noted in multiple TET-deficient genomes is primarily observed in the heterochromatin compartment. In a mouse model of T cell lymphoma driven by TET deficiency (Tet2/3 DKO T cells), genomic analysis of malignant T cells revealed DNA hypomethylation in the heterochromatic genomic compartment, as well as reactivation of repeat elements and enrichment for single-nucleotide alterations, primarily in heterochromatic regions of the genome. Moreover, hematopoietic stem/precursor cells (HSPCs) doubly deficient for Tet2 and Dnmt3a displayed greater losses of DNA methylation than HSPCs singly deficient for Tet2 or Dnmt3a alone, potentially explaining the unexpected synergy between DNMT3A and TET2 mutations in myeloid and lymphoid malignancies. Tet1-deficient cells showed decreased localization of DNMT3A in the heterochromatin compartment compared with WT cells, pointing to a functional interaction between TET and DNMT proteins and providing a potential explanation for the hypomethylation observed in TET-deficient genomes. Our data suggest that TET loss of function may at least partially underlie the characteristic pattern of global hypomethylation coupled to regional hypermethylation observed in diverse cancer genomes, and highlight the potential contribution of heterochromatin hypomethylation to oncogenesis.


Subject(s)
DNA Methylation , DNA, Neoplasm/metabolism , DNA-Binding Proteins/deficiency , Hematopoietic Stem Cells/metabolism , Lymphoma, T-Cell/metabolism , Neoplasms, Experimental/metabolism , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins/deficiency , Animals , DNA (Cytosine-5-)-Methyltransferases/deficiency , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , DNA, Neoplasm/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Genome-Wide Association Study , Hematopoietic Stem Cells/pathology , Heterochromatin/genetics , Heterochromatin/metabolism , Heterochromatin/pathology , Humans , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/pathology , Mice , Mice, Knockout , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 116(25): 12410-12415, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31152140

ABSTRACT

T cells expressing chimeric antigen receptors (CAR T cells) have shown impressive therapeutic efficacy against leukemias and lymphomas. However, they have not been as effective against solid tumors because they become hyporesponsive ("exhausted" or "dysfunctional") within the tumor microenvironment, with decreased cytokine production and increased expression of several inhibitory surface receptors. Here we define a transcriptional network that mediates CD8+ T cell exhaustion. We show that the high-mobility group (HMG)-box transcription factors TOX and TOX2, as well as members of the NR4A family of nuclear receptors, are targets of the calcium/calcineurin-regulated transcription factor NFAT, even in the absence of its partner AP-1 (FOS-JUN). Using a previously established CAR T cell model, we show that TOX and TOX2 are highly induced in CD8+ CAR+ PD-1high TIM3high ("exhausted") tumor-infiltrating lymphocytes (CAR TILs), and CAR TILs deficient in both TOX and TOX2 (Tox DKO) are more effective than wild-type (WT), TOX-deficient, or TOX2-deficient CAR TILs in suppressing tumor growth and prolonging survival of tumor-bearing mice. Like NR4A-deficient CAR TILs, Tox DKO CAR TILs show increased cytokine expression, decreased expression of inhibitory receptors, and increased accessibility of regions enriched for motifs that bind activation-associated nuclear factor κB (NFκB) and basic region-leucine zipper (bZIP) transcription factors. These data indicate that Tox and Nr4a transcription factors are critical for the transcriptional program of CD8+ T cell exhaustion downstream of NFAT. We provide evidence for positive regulation of NR4A by TOX and of TOX by NR4A, and suggest that disruption of TOX and NR4A expression or activity could be promising strategies for cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Depletion , Transcription Factors/metabolism , Animals , Immunotherapy , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Protein Binding , RNA, Messenger/genetics , Transcription Factors/genetics , Tumor Microenvironment
9.
Nature ; 567(7749): 530-534, 2019 03.
Article in English | MEDLINE | ID: mdl-30814732

ABSTRACT

T cells expressing chimeric antigen receptors (CAR T cells) targeting human CD19 (hCD19) have shown clinical efficacy against B cell malignancies1,2. CAR T cells have been less effective against solid tumours3-5, in part because they enter a hyporesponsive ('exhausted' or 'dysfunctional') state6-9 triggered by chronic antigen stimulation and characterized by upregulation of inhibitory receptors and loss of effector function. To investigate the function of CAR T cells in solid tumours, we transferred hCD19-reactive CAR T cells into hCD19+ tumour-bearing mice. CD8+CAR+ tumour-infiltrating lymphocytes and CD8+ endogenous tumour-infiltrating lymphocytes expressing the inhibitory receptors PD-1 and TIM3 exhibited similar profiles of gene expression and chromatin accessibility, associated with secondary activation of nuclear receptor transcription factors NR4A1 (also known as NUR77), NR4A2 (NURR1) and NR4A3 (NOR1) by the initiating transcription factor NFAT (nuclear factor of activated T cells)10-12. CD8+ T cells from humans with cancer or chronic viral infections13-15 expressed high levels of NR4A transcription factors and displayed enrichment of NR4A-binding motifs in accessible chromatin regions. CAR T cells lacking all three NR4A transcription factors (Nr4a triple knockout) promoted tumour regression and prolonged the survival of tumour-bearing mice. Nr4a triple knockout CAR tumour-infiltrating lymphocytes displayed phenotypes and gene expression profiles characteristic of CD8+ effector T cells, and chromatin regions uniquely accessible in Nr4a triple knockout CAR tumour-infiltrating lymphocytes compared to wild type were enriched for binding motifs for NF-κB and AP-1, transcription factors involved in activation of T cells. We identify NR4A transcription factors as having an important role in the cell-intrinsic program of T cell hyporesponsiveness and point to NR4A inhibition as a promising strategy for cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Neoplasms/genetics , Neoplasms/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Receptors, Chimeric Antigen/immunology , Transcription Factors/metabolism , Adoptive Transfer , Animals , Antigens, CD19/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Female , Gene Expression Profiling , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Neoplasms/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency , Nuclear Receptor Subfamily 4, Group A, Member 2/deficiency , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Receptors, Steroid/deficiency , Receptors, Steroid/metabolism , Receptors, Thyroid Hormone/deficiency , Receptors, Thyroid Hormone/metabolism , Survival Rate , Transcription Factor AP-1/metabolism , Transcription Factors/deficiency
10.
Immunity ; 45(6): 1327-1340, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27939672

ABSTRACT

In response to acute infection, naive CD8+ T cells expand, differentiate into effector cells, and then contract to a long-lived pool of memory cells after pathogen clearance. During chronic infections or in tumors, CD8+ T cells acquire an "exhausted" phenotype. Here we present genome-wide comparisons of chromatin accessibility and gene expression from endogenous CD8+ T cells responding to acute and chronic viral infection using ATAC-seq and RNA-seq techniques. Acquisition of effector, memory, or exhausted phenotypes was associated with stable changes in chromatin accessibility away from the naive T cell state. Regions differentially accessible between functional subsets in vivo were enriched for binding sites of transcription factors known to regulate these subsets, including E2A, BATF, IRF4, T-bet, and TCF1. Exhaustion-specific accessible regions were enriched for consensus binding sites for NFAT and Nr4a family members, indicating that chronic stimulation confers a unique accessibility profile on exhausted cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chromatin Assembly and Disassembly/immunology , Gene Expression/immunology , Immunologic Memory/immunology , Lymphocyte Activation/immunology , Animals , Arenaviridae Infections/immunology , Chromatin , Disease Models, Animal , Gene Expression Profiling , Lymphocytic choriomeningitis virus , Mice , Mice, Inbred C57BL , Mice, Transgenic
11.
Nature ; 530(7588): 103-7, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26814965

ABSTRACT

The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.


Subject(s)
Aging/physiology , Caenorhabditis elegans/physiology , Longevity/physiology , Aging/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Death , Diet , Forkhead Transcription Factors/genetics , Kinetics , Longevity/genetics , Oxidative Stress , Phosphatidylinositol 3-Kinases/genetics , Receptor, Insulin/genetics , Risk , Temperature , Time Factors , Transcription Factors/genetics
12.
Nat Commun ; 6: 10071, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26607761

ABSTRACT

TET-family dioxygenases oxidize 5-methylcytosine (5mC) in DNA, and exert tumour suppressor activity in many types of cancers. Even in the absence of TET coding region mutations, TET loss-of-function is strongly associated with cancer. Here we show that acute elimination of TET function induces the rapid development of an aggressive, fully-penetrant and cell-autonomous myeloid leukaemia in mice, pointing to a causative role for TET loss-of-function in this myeloid malignancy. Phenotypic and transcriptional profiling shows aberrant differentiation of haematopoietic stem/progenitor cells, impaired erythroid and lymphoid differentiation and strong skewing to the myeloid lineage, with only a mild relation to changes in DNA modification. We also observe progressive accumulation of phospho-H2AX and strong impairment of DNA damage repair pathways, suggesting a key role for TET proteins in maintaining genome integrity.


Subject(s)
DNA-Binding Proteins/genetics , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid/genetics , Proto-Oncogene Proteins/genetics , RNA, Messenger/metabolism , Animals , DNA Repair/genetics , Dioxygenases , Histones/metabolism , Leukemia, Myeloid/pathology , Mice , Mice, Knockout , Phosphorylation , Tumor Stem Cell Assay
13.
PLoS Pathog ; 10(6): e1004200, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24945527

ABSTRACT

Microsporidia comprise a phylum of over 1400 species of obligate intracellular pathogens that can infect almost all animals, but little is known about the host response to these parasites. Here we use the whole-animal host C. elegans to show an in vivo role for ubiquitin-mediated response to the microsporidian species Nematocida parisii, as well to the Orsay virus, another natural intracellular pathogen of C. elegans. We analyze gene expression of C. elegans in response to N. parisii, and find that it is similar to response to viral infection. Notably, we find an upregulation of SCF ubiquitin ligase components, such as the cullin ortholog cul-6, which we show is important for ubiquitin targeting of N. parisii cells in the intestine. We show that ubiquitylation components, the proteasome, and the autophagy pathway are all important for defense against N. parisii infection. We also find that SCF ligase components like cul-6 promote defense against viral infection, where they have a more robust role than against N. parisii infection. This difference may be due to suppression of the host ubiquitylation system by N. parisii: when N. parisii is crippled by anti-microsporidia drugs, the host can more effectively target pathogen cells for ubiquitylation. Intriguingly, inhibition of the ubiquitin-proteasome system (UPS) increases expression of infection-upregulated SCF ligase components, indicating that a trigger for transcriptional response to intracellular infection by N. parisii and virus may be perturbation of the UPS. Altogether, our results demonstrate an in vivo role for ubiquitin-mediated defense against microsporidian and viral infections in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/parasitology , Caenorhabditis elegans/virology , Cullin Proteins/immunology , Microsporidia/pathogenicity , SKP Cullin F-Box Protein Ligases/genetics , Ubiquitination/genetics , Animals , Autophagy/genetics , Autophagy/immunology , Base Sequence , Caenorhabditis elegans/immunology , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/biosynthesis , Caenorhabditis elegans Proteins/immunology , Caenorhabditis elegans Proteins/metabolism , Cullin Proteins/biosynthesis , Host-Pathogen Interactions , Microsporidia/immunology , RNA Interference , RNA, Small Interfering , SKP Cullin F-Box Protein Ligases/antagonists & inhibitors , SKP Cullin F-Box Protein Ligases/metabolism , Sequence Analysis, RNA , Transcription, Genetic/genetics , Ubiquitin/metabolism
14.
PLoS Genet ; 10(3): e1004225, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24675767

ABSTRACT

Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Insulin/genetics , Receptor, Insulin/genetics , Animals , Caenorhabditis elegans/growth & development , Gene Regulatory Networks , Insulin/metabolism , Longevity/genetics , Phenotype , Receptor, Insulin/metabolism , Signal Transduction/genetics , Somatomedins/genetics , Somatomedins/metabolism
15.
Nat Methods ; 10(7): 665-70, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23666410

ABSTRACT

The measurement of lifespan pervades aging research. Because lifespan results from complex interactions between genetic, environmental and stochastic factors, it varies widely even among isogenic individuals. The actions of molecular mechanisms on lifespan are therefore visible only through their statistical effects on populations. Indeed, survival assays in Caenorhabditis elegans have provided critical insights into evolutionarily conserved determinants of aging. To enable the rapid acquisition of survival curves at an arbitrary statistical resolution, we developed a scalable imaging and analysis platform to observe nematodes over multiple weeks across square meters of agar surface at 8-µm resolution. The automated method generates a permanent visual record of individual deaths from which survival curves are constructed and validated, producing data consistent with results from the manual method of survival curve acquisition for several mutants in both standard and stressful environments. Our approach permits rapid, detailed reverse-genetic and chemical screens for effects on survival and enables quantitative investigations into the statistical structure of aging.


Subject(s)
Caenorhabditis elegans/physiology , Image Interpretation, Computer-Assisted/methods , Life Expectancy , Longevity/physiology , Survival Analysis , Survival Rate , Video Recording/methods , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...