Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell Biochem ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39251464

ABSTRACT

Scaffolds used in tissue engineering can be obtained from synthetic or natural materials, always focusing the effort on mimicking the extracellular matrix of human native tissue. In this study, a decellularization process is used to obtain an acellular, biocompatible non-cytotoxic human pericardium graft as a bio-substitute. An enzymatic and hypertonic method was used to decellularize the pericardium. Histological analyses were performed to determine the absence of cells and ensure the integrity of the extracellular matrix (ECM). In order to measure the effect of the decellularization process on the tissue's biological and mechanical properties, residual genetic content and ECM biomolecules (collagen, elastin, and glycosaminoglycan) were quantified and the tissue's tensile strength was tested. Preservation of the biomolecules, a residual genetic content below 50 ng/mg dry tissue, and maintenance of the histological structure provided evidence for the efficacy of the decellularization process, while preserving the ECM. Moreover, the acellular tissue retains its mechanical properties, as shown by the biomechanical tests. Our group has shown that the acellular pericardial matrix obtained through the super-fast decellularization protocol developed recently retains the desired biomechanical and structural properties, suggesting that it is suitable for a broad range of clinical indications.

2.
Transpl Immunol ; 78: 101825, 2023 06.
Article in English | MEDLINE | ID: mdl-36934900

ABSTRACT

The processing and initial testing of a new human tissue preparation is described. Full-thickness Acellular Dermal Matrix (ftADM) is the extracellular matrix (ECM) obtained by decellularization of full-thickness human skin from cadaveric donors. The safety, stability and usability of the graft are discussed with respect to the results of the residual cellular content, maintenance of ECM components, and biomechanical properties. Quantitative and qualitative analysis of the ECM demonstrated the absence of cell debris, while the native structure of human dermis was maintained. Biomechanical testing showed stiffness values comparable to other commercial products used for tendon reinforcement, suggesting that our ftADM could be successfully used not only in soft tissue regeneration surgeries, but also in tendon reinforcement. First case of ftADM in rotator cuff augmentation is described. Technical management of the patch during surgery and clinical outcomes are discussed.


Subject(s)
Rotator Cuff Injuries , Rotator Cuff , Humans , Rotator Cuff/surgery , Rotator Cuff Injuries/surgery , Skin , Tendons/surgery , Skin Transplantation/methods
3.
Sci Rep ; 9(1): 19887, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882721

ABSTRACT

Exosomes are small extracellular vesicles that act as intercellular messengers. Previous studies revealed that, during acute pancreatitis, circulating exosomes could reach the alveolar compartment and activate macrophages. However, proteomic analysis suggested that the most likely origin of these exosomes could be the liver instead of the pancreas. The present study aimed to characterize the exosomes released by pancreas to pancreatitis-associated ascitic fluid (PAAF) as well as those circulating in plasma in an experimental model of taurocholate-induced acute pancreatitis in rats. We provide evidence that during acute pancreatitis two different populations of exosomes are generated with relevant differences in cell distribution, protein and microRNA content as well as different implications in their physiological effects. During pancreatitis plasma exosomes, but not PAAF exosomes, are enriched in the inflammatory miR-155 and show low levels of miR-21 and miR-122. Mass spectrometry-based proteomic analysis showed that PAAF exosomes contains 10-30 fold higher loading of histones and ribosomal proteins compared to plasma exosomes. Finally, plasma exosomes have higher pro-inflammatory activity on macrophages than PAAF exosomes. These results confirm the generation of two different populations of exosomes during acute pancreatitis. Deep understanding of their specific functions will be necessary to use them as therapeutic targets at different stages of the disease.


Subject(s)
Exosomes/metabolism , Histones/metabolism , MicroRNAs/metabolism , Pancreas/metabolism , Pancreatitis/metabolism , Ribosomal Proteins/metabolism , Animals , Disease Models, Animal , Exosomes/pathology , Male , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/pathology , Rats , Rats, Wistar , Taurocholic Acid/adverse effects , Taurocholic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL