Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597186

ABSTRACT

Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.


Subject(s)
Actomyosin , Intercellular Adhesion Molecule-1 , Animals , Mice , Humans , Actomyosin/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Epithelial Cells/metabolism , Hepatocytes/metabolism , Liver/metabolism , Actin Cytoskeleton/metabolism , Leukocytes/metabolism , Cell Polarity
2.
Int J Mol Sci ; 21(23)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255335

ABSTRACT

Non-canonical, four-stranded nucleic acids secondary structures are present within regulatory regions in the human genome and transcriptome. To date, these quadruplex structures include both DNA and RNA G-quadruplexes, formed in guanine-rich sequences, and i-Motifs, found in cytosine-rich sequences, as their counterparts. Quadruplexes have been extensively associated with cancer, playing an important role in telomere maintenance and control of genetic expression of several oncogenes and tumor suppressors. Therefore, quadruplex structures are considered attractive molecular targets for cancer therapeutics with novel mechanisms of action. In this review, we provide a general overview about recent research on the implications of quadruplex structures in cancer, firstly gathering together DNA G-quadruplexes, RNA G-quadruplexes as well as DNA i-Motifs.


Subject(s)
DNA/genetics , G-Quadruplexes , Molecular Targeted Therapy , Neoplasms/therapy , Cytosine/metabolism , Gene Expression Regulation, Neoplastic/genetics , Guanine/metabolism , Humans , Neoplasms/genetics , Oncogenes/genetics , Telomere/genetics , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...