Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 123(18): 3898-3906, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30973725

ABSTRACT

Photochemical damage of DNA is initiated by absorption of ultraviolet light, and the photoproducts are formed as a result of excited-state structural and electronic dynamics. We have used UV resonance Raman spectroscopy to measure the initial excited-state structural dynamics of homopentamers of adenosine monophosphate (3'-dApdApdApdApdAp-5') and thymidine monophosphate (3'-dTpdTpdTpdTpdTp-5') and compare them to those of the monomeric nucleobases. The resonance Raman spectra of the homopentamers are similar to those of the corresponding monomers. Initial excited-state slopes, homogeneous and inhomogeneous broadening, and other excited-state parameters were extracted by self-consistent simulation of the resonance Raman excitation profiles and absorption spectra with a time-dependent formalism and are also similar to the initial excited-state slopes and broadening in the nucleotide monomers. The lack of differences between the initial excited-state structural dynamics of the nucleotides within the pentamer and the isolated nucleobases is consistent with a model in which the formation of photochemical products in oligonucleotides and DNA is dependent on the formation of the transition-state structure within these polymers, dictated by their large-scale dynamics. These results are discussed in light of the known photochemistry of DNA and the nucleobases.


Subject(s)
Adenosine Monophosphate/chemistry , Polymerization , Spectrum Analysis, Raman , Thymidine Monophosphate/chemistry
2.
ACS Omega ; 4(2): 3469-3475, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30873508

ABSTRACT

It has been well established that mutations in K-Ras and N-Ras proto-oncogenes can convert them into active oncogenes. Current molecular cancer research has been focused on determining the key steps by which cellular genes become oncogenes and not on the underlying and fundamental chemical damage mechanism and susceptibility to damage. In this study, we investigate the damage hot spots present in the N-Ras and K-Ras genes upon exposure to UVC radiation. Detection of damage is accomplished by a simple, sensitive, mix-and-read assay using an EvaGreen probe in a 96-well microtiter plate. Our results show that, although there is high degree of sequential similarities among K-Ras and N-Ras genes, they show different degrees of UV damage in different portions of their genomes. Our experiments demonstrate that overall, the K-Ras genome is more prone to UVC damage than the N-Ras genome. We observe that the extent of damage increases with increasing number of TTs in a sequence, consistent with previous results that show that thymine cyclobutyl photodimers are the primary DNA damage photoproducts upon UVC irradiation. This understanding of the effect of UVC radiation on various codons of K-Ras and N-Ras genes will help to increase our understanding about hot spots of DNA damage and the chemical damage mechanism.

3.
J Pharm Biomed Anal ; 157: 226-234, 2018 Aug 05.
Article in English | MEDLINE | ID: mdl-29843099

ABSTRACT

Hepatocellular carcinoma is one of the most common malignant tumors in the world. Chronic hepatitis B and C infections are the most common etiologies of hepatocellular carcinoma worldwide. In this study, we explore the potential DNA damaging effect of some FDA-approved antiviral drugs which may be able to serve as anticancer agents for hepatocellular carcinoma, in order to better elucidate their mode of action. Five antiviral drugs were selected; ribavirin, sofosbuvir, tenofovir disoproxil fumerate, daclatasvir and ledipasvir. Several methods, including absorption spectroscopy, MALDI-TOF mass spectrometry and fluorimetric analysis using the EvaGreen (EG) intercalating dye, were used to probe the drug-induced DNA damage. Results show that only daclatasvir and ledipasvir induced DNA damage. Absorption spectroscopy showed hyperchromicity in the 260-nm DNA absorption band of DNA samples incubated with each drug, indicating disruption of the double-strand structure. Mass spectra for DNA samples incubated with each of the two drugs showed a disappearance of the DNA molecular ion peak with a concomitant appearance of peaks with smaller m/z, indicating DNA strand breaks. EG fluorescence was observed to decrease with increasing incubation time of daclatasvir and ledipasvir with DNA, indicating that the EG detaches from the DNA, likely due to DNA damage. All of these results are consistent with DNA damage, proposed as oxidative damage to both nucleobase and deoxyribose moieties of DNA as the mode of action for these two drugs. Moreover, these results are dependent on the antiviral drug concentration and show that DNA regions rich in guanine are affected more than other regions by these two drugs. Therefore, such antiviral drugs may present a promising therapeutic alternative to the currently used anticancer agents, especially for hepatitis B and C patients with hepatocellular carcinoma resistant to conventional treatment approaches.


Subject(s)
Antiviral Agents/pharmacology , DNA Damage/drug effects , Chemistry Techniques, Analytical/methods , DNA/metabolism , Fluorescence , Fluorometry/methods , Humans , Mass Spectrometry/methods , X-Ray Absorption Spectroscopy/methods
4.
Anal Chim Acta ; 994: 92-99, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29126473

ABSTRACT

The human genome is susceptible to change; base mismatches can arise from damaged DNA, replication errors, and spontaneous mutation, and have the potential to cause apoptosis, carcinogenesis, and mutagenesis. Many techniques have been developed for DNA mismatch detection, but many of these methods have complex, time-consuming procedures and are limited to the detection of specific types of DNA mismatches. In this work, we present a general method for the simple and sensitive nucleobase-sensitized luminescent detection of mismatches in double-stranded DNA (dsDNA) using terbium ions. Terbium ions luminesce differently depending on the site of coordination in DNA due to the proximity effect of the energy transfer process that occurs from excited, non-hydrogen bonded nucleobases in single-stranded DNA (ssDNA) regions to the terbium ions. We examined the effect of location and number of mismatches on the sensitivity and selectivity of this probe in both synthetic oligonucleotides containing mismatches and natural calf thymus DNA exposed to UV light to induce reduced base pairing due to damage. This method shows good sensitivity for the determination of DNA mismatches, with limit of detection and limit of quantification of 1 and 3 mismatches, respectively, per dsDNA sequence.


Subject(s)
DNA, Single-Stranded/chemistry , DNA/chemistry , Luminescence , Nucleic Acid Hybridization , Animals , Base Pair Mismatch , Cattle , Oligonucleotide Probes
5.
Chemphyschem ; 17(9): 1349-55, 2016 05 04.
Article in English | MEDLINE | ID: mdl-26717253

ABSTRACT

Resonance Raman derived initial excited-state structural dynamics provide insight into the photochemical mechanisms of pyrimidine nucleobases, in which the photochemistry appears to be dictated by the C5 and C6 substituents. The absorption and resonance Raman spectra and excitation profiles of 5,6-dideuterouracil were measured to further test this photochemical dependence on the C5 and C6 substituents. The resulting set of excited-state reorganization energies of the observed internal coordinates were calculated and compared to those of other 5- and 6-substituted uracils. The results show that the initial excited-state dynamics along the C5C6 stretch responds to changes in mass at C5 and C6 in the same manner but that the in-plane bends at C5 and C6 are more sensitive to substituents at the C5 position than at the C6 position. In addition, the presence of two deuterium substituents at C5 and C6 decreases the initial excited-state structural dynamics along these in-plane bends, in contrast to what is observed in the presence of two CH3 groups on C5 and C6. The results are discussed in the context of DNA nucleobase photochemistry.


Subject(s)
Spectrum Analysis, Raman/methods , Uracil/chemistry , Molecular Structure
6.
J Phys Chem A ; 118(51): 12161-7, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25455567

ABSTRACT

Substituents on the pyrimidine ring of nucleobases appear to play a major role in determining their initial excited-state structural dynamics and resulting photochemistry. To better understand the determinants of nucleobase initial excited-state structural dynamics, we have measured the absorption and resonance Raman excitation profiles of 6-deuterouracil (6-d-U) and 6-methyluracil (6-MeU). Simulation of the resonance Raman excitation profiles and absorption spectrum with a self-consistent, time-dependent formalism shows the effect of the deuterium and methyl group on the photochemically active internal coordinates, i.e. C5C6 stretch and C5X and C6X bends. The methyl group on either the C5 or C6 position of uracil equally increases the excited-state reorganization energies along the C5C6 stretch. However, a lower reorganization energy of the C5X + C6X bends in 6-MeU than uracil and 5-MeU shows that C6 methyl substituents reduce the bending reorganization energy. In addition, deuterium substitution at either C5 or C6 has a much smaller effect on the initial excited-state structural dynamics than methyl substitution, consistent with a mass effect. These results will be discussed in light of the resulting photochemistry of pyrimidine nucleobases.


Subject(s)
Photochemical Processes , Pyrimidines/chemistry , Spectrum Analysis, Raman , Uracil/analogs & derivatives , Uracil/chemistry
7.
J Phys Chem B ; 118(42): 12243-50, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25255466

ABSTRACT

N-Alkylated indanylidene-pyrroline-based molecular switches mimic different aspects of the light-induced retinal chromophore isomerization in rhodopsin: the vertebrate dim-light visual pigment. In particular, they display a similar ultrashort excited-state lifetime, subpicosecond photoproduct appearance time, and photoproduct vibrational coherence. To better understand the early light-induced dynamics of such systems, we measured and modeled the resonance Raman spectra of the Z-isomer of the N-methyl-4-(5'-methoxy-2',2'-dimethyl-indan-1'-ylidene)-5-methyl-2,3-dihydro-2H-pyrrolium (NAIP) switch in methanol solution. It is shown that the data, complemented with a <70 fs excited-state trajectory computation, demonstrate initial excited-state structural dynamics dominated by double-bond expansion and single-bond contraction stretches. This mode subsequently couples with the five-membered ring inversion and double-bond torsion. These results are discussed in the context of the mechanism of the excited-state photoisomerization of NAIP switches in solution and the 11-cis retinal in rhodopsin.


Subject(s)
Indans/chemistry , Pyrroles/chemistry , Rhodopsin/chemistry , Alkylation , Models, Molecular , Molecular Conformation , Spectrum Analysis, Raman , Stereoisomerism
8.
J Phys Chem A ; 118(26): 4680-7, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24882102

ABSTRACT

In order to understand the effect of methyl substitution patterns on the initial excited-state structural dynamics of uracil derivatives, we measured the resonance Raman spectra of 5,6-dimethyluracil (5,6-DMU). The results show that the resonance Raman spectrum is a combination of that of 5-methyl- and 6-methyluracil. The resonance Raman excitation profiles (RREPs) and absorption spectrum are simulated with a self-consistent, time-dependent formalism to yield the excited-state slopes and broadening parameters. The initial excited-state structural dynamics occur primarily along the C5═C6 stretching mode, as expected, but with lesser excited-state slopes along each mode compared to 5-methyluracil and 6-methyluracil. This study along with previous experiments with different uracil derivatives show that the presence and positions of the methyl groups seems to determine the partitioning of initial excited-state structural dynamics.


Subject(s)
Adjuvants, Immunologic/chemistry , Spectrum Analysis, Raman , Thymine/chemistry , Uracil/analogs & derivatives , Models, Chemical , Molecular Structure , Uracil/chemistry , Vibration
9.
Anal Chim Acta ; 786: 116-23, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23790300

ABSTRACT

Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb(3+)). Single-stranded oligonucleotides greatly enhance the Tb(3+) emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb(3+)/hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb(3+), producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb(3+)/hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb(3+)/hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36±1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage.


Subject(s)
DNA Damage/radiation effects , Fluorescent Dyes/chemistry , Oligonucleotides/analysis , Oligonucleotides/radiation effects , Terbium/chemistry , Ultraviolet Rays/adverse effects , Fluorescence , Fluorescent Dyes/economics , Fluorescent Dyes/standards , Nucleic Acids/analysis , Nucleic Acids/radiation effects , Terbium/economics , Terbium/standards
10.
Anal Chem ; 85(9): 4321-7, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23544988

ABSTRACT

Single nucleotide polymorphisms (SNPs) are the main cause for variations in the human genome. DNA lesions, such as cyclobutane pyrimidine dimers (CPDs), [6-4] pyrimidine-pyrimidinones, dewar pyrimidinones, and photohydrates, can subsequently lead to mutagenesis, carcinogenesis, and cell death. Much effort has focused on methods for detecting DNA, SNPs, or damaged nucleic acids. However, almost all of the proposed methods consist of multistep procedures, are limited to specific types of damage, some of these methods require expensive instruments, and some suffer from a high level of interferences. In this paper, we present a novel, simple, mix-and-read assay for the detection of nucleic acids that is general for all types of SNPs and nucleic acid damage. This method uses a chimeric RNA-DNA molecular beacon (chMB). The calibration curve of the chMB for detecting single base mismatch and ultraviolet (UV)-induced DNA damage shows good linearity (R(2) = 0.981 and 0.996, respectively) and limits of detection of 10.4 ± 2.2 and 8.64 ± 1.2 nM, respectively. The chimeric RNA-DNA MB proves to be a more sensitive and selective tool for the quantification of nucleic acids, DNA mismatches, and UV-induced DNA damage than DNA MBs.


Subject(s)
Molecular Probes/chemistry , Nucleic Acids/analysis , Polymorphism, Single Nucleotide , Base Pair Mismatch , DNA Damage , Temperature , Ultraviolet Rays
11.
Photochem Photobiol ; 89(4): 884-90, 2013.
Article in English | MEDLINE | ID: mdl-23441594

ABSTRACT

The exposure of DNA to ultraviolet (UV) radiation causes sequence-dependent damage. Thus, there is a need for an analytical technique that can detect damage in large numbers of DNA sequences simultaneously. In this study, we have designed an assay for UVC-induced DNA damage in multiple oligonucleotides simultaneously by using a 96-well plate and a novel automated sample mover. The UVC-induced DNA damage is measured using smart probes, analogs of molecular beacons in which guanosine nucleotides act as the fluorescence quencher. Our results show that the oligonucleotide damage constants obtained with this method are reproducible and similar to those obtained in cuvettes. The calibration curve for poly-dT shows good linearity (R(2) = 0.96), with limits of detection (LOD) and quantification (LOQ) equal to 55 and 183 nm, respectively. The results show that the damage kinetics upon irradiation is sensitive to the different types of photoproducts formed in the different sequences used; i.e. poly-A oligonucleotides containing guanine are damaged at a faster rate than poly-A oligonucleotides containing either thymine or cytosine. Thus, detecting DNA damage in a 96-well plate and quantifying the damage with smart probes are a simple, fast and inexpensive mix-and-read technique for multiplexed, sequence-specific DNA damage detection.


Subject(s)
DNA Damage , Ultraviolet Rays/adverse effects , Base Sequence , Photochemical Processes , Temperature
12.
J Phys Chem B ; 116(35): 10496-503, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22697627

ABSTRACT

Thymine is one of the pyrimidine nucleobases found in DNA. Upon absorption of UV light, thymine forms a number of photoproducts, including the cyclobutyl photodimer, the pyrimidine pyrimidinone [6-4] photoproduct and the photohydrate. Here, we use UV resonance Raman spectroscopy to measure the initial excited-state structural dynamics of the N(1)-substituted thymine derivatives N(1)-methylthymine, thymidine, and thymidine 5'-monophosphate in an effort to understand the role of the N1 substituent in determining the excited-state structural dynamics and the subsequent photochemistry. The UV resonance Raman spectrum of thymidine and thymidine 5'-monophosphate are similar to that of thymine, suggesting that large masses at N(1) effectively isolate the vibrations of the nucleobase. However, the UV resonance Raman spectrum of N(1)-methylthymine is significantly different, suggesting that the methyl group couples into the thymine ring vibrations. The resulting resonance Raman intensities and absorption spectra are self-consistently simulated with a time-dependent expression to quantitatively extract the initial excited-state slopes, homogeneous and inhomogeneous linewidths, and electronic parameters. These results are discussed in the context of the known photochemistry of thymine and its derivatives.


Subject(s)
Thymine/analogs & derivatives , Absorption , Spectrum Analysis, Raman , Thymidine/chemistry , Thymidine Monophosphate/chemistry , Ultraviolet Rays
13.
Anal Chim Acta ; 726: 44-9, 2012 May 13.
Article in English | MEDLINE | ID: mdl-22541012

ABSTRACT

Nucleic acid exposure to radiation and chemical insults leads to damage and disease. Thus, detection and understanding DNA damage is important for elucidating molecular mechanisms of disease. However, current methods of DNA damage detection are either time-consuming, destroy the sample, or are too specific to be used for generic detection of damage. In this paper, we develop a fluorescence sensor of 2-aminopurine (2AP), a fluorescent analogue of adenine, incorporated in the loop of a hairpin probe for the quantification of ultraviolet (UV) C-induced nucleic acid damage. Our results show that the selectivity of the 2AP hairpin probe to UV-induced nucleic acid damage is comparable to molecular beacon (MB) probes of DNA damage. The calibration curve for the 2AP hairpin probe shows good linearity (R(2)=0.98) with a limit of detection of 17.2 nM. This probe is a simple, fast and economic fluorescence sensor for the quantification of UV-induced damage in DNA.


Subject(s)
2-Aminopurine/chemistry , DNA Damage , Spectrometry, Fluorescence , Ultraviolet Rays , Fluorescent Dyes/chemistry , Inverted Repeat Sequences
14.
Anal Bioanal Chem ; 403(1): 179-84, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22349333

ABSTRACT

Cisplatin (cis-diamminedichloroplatinum(II)) causes crosslinking of DNA at AG and GG sites in cellular DNA, inhibiting replication, and making it a useful anti-cancer drug. Several techniques have been used previously to detect nucleic acid damage but most of these tools are labour-intensive, time-consuming, and/or expensive. Here, we describe a sensitive, robust, and quantitative tool for detecting cisplatin-induced DNA damage by using fluorescent molecular beacon probes (MB). Our results show a decrease of fluorescence in the presence of cisplatin-induced DNA damage, confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The decrease in fluorescence upon damage scales with the number of AG and GG sites, indicating the ability of MB to quantitatively detect DNA damage by cisplatin.


Subject(s)
Antineoplastic Agents/toxicity , Cisplatin/toxicity , DNA Damage , Molecular Probes , Fluorescence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
Photochem Photobiol ; 88(3): 645-50, 2012.
Article in English | MEDLINE | ID: mdl-22329786

ABSTRACT

Ultraviolet A (UVA)-irradiated 4'-hydroxymethyl-4,5',8-trimethyl psoralen (HMT) in the presence of a poly-dT(17) and dA(7) TTA(8) oligonucleotides produces HMT-dT(17) and HMT-dA(7) TTA(8) adducts in aqueous solution. In this article, we determine whether these HMT-dT(17) and HMT-dA(7) TTA(8) adducts can be detected with a molecular beacon (MB) probe. We measure the degree of damage in dT(17) and dA(7) TTA(8) solutions containing UVA-activated HMT via monitoring the decrease in MB fluorescence. Photoproduct formation is confirmed by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-fight mass spectrometry measurements) and absorption spectroscopy. The MB fluorescence decreases upon UVA irradiation in the presence of HMT with a single-exponential time constants of 114.2 ± 6.5 min for HMT-dT(17) adducts and 677.8 ± 181.8 min for HMT-dA(7) TTA(8) adducts. Our results show that fluorescent MB probes are a selective, robust and accurate tool for detecting UVA-activated HMT-induced DNA damage.


Subject(s)
Furocoumarins/chemistry , Oligonucleotide Probes , Photochemical Processes , DNA Adducts , Fluorescence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
16.
J Phys Chem A ; 115(38): 10445-51, 2011 Sep 29.
Article in English | MEDLINE | ID: mdl-21838233

ABSTRACT

The resonance Raman spectra of 2'-deoxyguanosine, a DNA nucleoside, were measured in aqueous solution at wavelengths throughout its 260 nm absorption band. Self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum using a time-dependent wave packet formalism with two electronic states yielded the initial excited-state structural dynamics in both states. The vibrational modes containing the N(7)═C(8) stretching and C(8)-H bending internal coordinates were found to exhibit significant initial structural dynamics upon photoexcitation to either state and are coincident with the photochemical reaction coordinate involving the formation of the 2'-deoxyguanosine cation radical.


Subject(s)
Deoxyguanosine/chemistry , Quantum Theory , Deoxyguanosine/analogs & derivatives , Nucleic Acid Conformation , Spectrum Analysis, Raman , Time Factors , Ultraviolet Rays
17.
J Phys Chem B ; 115(19): 6149-56, 2011 May 19.
Article in English | MEDLINE | ID: mdl-21510627

ABSTRACT

The photophysics and photochemistry of nucleobases are the factors governing the photostability of DNA and RNA, since they are the UV chromophores in nucleic acids. Because the formation of photoproducts involves structural changes in the excited electronic state, we study here the initial excited-state structural dynamics of 9-methyladenine (9-MeA) by using UV resonance Raman (UVRR) spectroscopy. UV resonance Raman intensities are sensitive to the initial excited-state structural dynamics of molecules. Therefore, information about the initial structural changes in the excited-state of a given molecule can be obtained from its UVRR intensities. The resonance Raman spectra of 9-MeA at wavelengths throughout its 262 nm absorption band were measured, and a self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum was performed using a time-dependent wave packet formalism. We found that the initial structural dynamics of this molecule primarily lie along the N3C4, C4C5, C5C6, C5N7, N7C8, and C8N9 stretching vibrations and CH(3) deformation vibrations. These results are discussed in the context of photochemistry and other deactivation processes.


Subject(s)
Adenine/analogs & derivatives , Adenine/chemistry , Models, Theoretical , Pyrimidines/chemistry , Spectrum Analysis, Raman , Ultraviolet Rays
18.
Anal Bioanal Chem ; 397(7): 2949-57, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20559626

ABSTRACT

Molecular beacons (MBs) are sensitive probes for many DNA sequence-specific applications, such as DNA damage detection, but suffer from technical and cost limitations. We have designed smart probes with self-quenching properties as an alternative to molecular beacons to monitor sequence-specific UV-induced photodamage of oligonucleotides. These probes have similar stem-loop structural characteristics as molecular beacons, but quenching is achieved instead via photoinduced intramolecular electron transfer by neighboring guanosine residues. Our results indicate that the probes are sensitive enough to detect nanomolar target concentrations and are specific enough to discriminate single-base damage. When the probes were used to monitor UV-induced photodamage in oligonucleotide sequences that differ by a single-base mismatch, the photodamage time constant was higher for the perfectly complementary target sequences than for the mismatch sequences, indicating that these probes are specific for each target sequence. In addition, time constants obtained for oligonucleotide target sequences with both stem and loop base mismatches are lower than those with only loop mismatches, suggesting that these sequences are also specifically distinguished by the smart probes. These probes thus constitute robust, sensitive, specific, and cheaper alternatives to MBs for sequence-specific DNA damage detection.


Subject(s)
DNA Damage/radiation effects , Molecular Probe Techniques , Oligonucleotide Probes/chemistry , Spectrophotometry/methods , Base Sequence , Molecular Sequence Data , Nucleic Acid Conformation , Species Specificity , Ultraviolet Rays
19.
Photochem Photobiol ; 86(4): 844-51, 2010.
Article in English | MEDLINE | ID: mdl-20492563

ABSTRACT

Trp-DNA adducts resulting from UV irradiation of pyrimidine bases and nucleotides in the presence of tryptophan (Trp) have been the subject of previous research. However, the relative yield of the adducts compared with the UV screening effect of Trp has not been previously considered. To determine whether Trp-DNA adduct formation or absorption "screening" by Trp is the predominant process when DNA solutions are irradiated with UV light in the presence of Trp, we irradiated Trp-containing DNA oligonucleotide solutions with UVC light and incubated aliquots of those solutions with molecular beacons (MBs) to detect the damage. We observed a rapid decay of fluorescence of the MBs for pure DNA solutions, thereby indicating damage. However, in the presence of Trp, the fluorescence decay is prolonged, with time constants that increase exponentially with Trp concentration. The results are discussed in terms of a beneficial in vivo cellular protection rather than harmful adduct formation and suggest a net sacrificial absorption of UV light by Trp which actually protects the DNA from UV damage.


Subject(s)
DNA/chemistry , Tryptophan/chemistry , Ultraviolet Rays , DNA Damage , Fluorescence , Oligonucleotides/chemistry , Photochemistry , Solutions , Temperature
20.
J Phys Chem B ; 113(43): 14336-42, 2009 Oct 29.
Article in English | MEDLINE | ID: mdl-19785434

ABSTRACT

To explore the origin of the differences in UV photochemistry of uracil (RNA) and thymine (DNA) nucleobases, we have measured the UV resonance Raman spectra of uracil in aqueous solution at wavelengths throughout the lowest-energy absorption band and analyzed the resulting resonance Raman excitation profiles and absorption spectra using a time-dependent wave-packet formalism to obtain the initial excited-state structural changes. In contrast to thymine, which differs from uracil only by the presence of a methyl group at C(5), most of the resonance Raman intensity and resulting initial excited-state structural dynamics for uracil occur along in-plane hydrogen-bond angle deformation, ring stretching, and carbonyl vibrational modes. Weaker intensities and less significant structural dynamics are observed along the C=C stretching mode. These results suggest that the initial excited-state structural dynamics of uracil occur along a carbon pyramidalization coordinate. These dynamics are different from those of thymine, which distorts primarily along a C(5)=C(6) bond lengthening coordinate. These differences in initial excited-state structural dynamics can explain the different primary photoproducts observed for these two pyrimidine nucleobases.


Subject(s)
Spectrum Analysis, Raman , Thymine/chemistry , Uracil/chemistry , Hydrogen Bonding , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...