Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Anal Chim Acta ; 1200: 339583, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35256132

ABSTRACT

Bioluminescence, that is the emission of light in living organisms, has been extensively explored and applied for diverse bioanalytical applications, spanning from molecular imaging to biosensing. The unprecedented technological evolution of portable light detectors opened new possibilities to implement bioluminescence detection into miniaturized devices. We are witnessing a number of applications, including DNA sequencing, reporter gene assays, DNA amplification for point-of care and point-of need analyses relying on BL. Several photon detectors are currently available for measuring low light emission, such as photomultiplier tubes (PMT), charge-coupled devices (CCD), complementary metal oxide semiconductors (CMOS), single photon avalanche diodes (SPADs), silicon photomultipliers (SiPMs) and smartphone-integrated CMOS. Each technology has pros and cons and several issues, such as temperature dependence of the instrumental specific noise, the power supply, imaging capability and ease of integration, should be considered in the selection of the most appropriate detector for the selected BL application. These issues will be critically discussed from the perspective of the analytical chemist together with relevant examples from the literature with the goal of helping the reader in the selection and use of the most suitable detector for the selected application and to introduce non familiar readers into this exciting field.


Subject(s)
Photons , Semiconductors , Smartphone
2.
Biosens Bioelectron ; 194: 113569, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34438340

ABSTRACT

Mercury contamination in the environment has reached alarming levels. Due to its persistence and bioaccumulation, mercury is one of the most widespread toxic heavy metals found in air, water and food. Thus, it is mandatory to monitor mercury and its compounds, and the availability of sensitive and rapid biosensors is highly valuable. We developed a low-cost biosensor for orthogonal detection of mercury(II) integrating three different biorecognition principles on a three-leaf paper: i) a mercury-specific bioluminescent Escherichia coli bioreporter strain expressing NanoLuc luciferase as reporter protein, ii) a purified ß-galactosidase (ß-gal) enzyme which is irreversibly inhibited by mercury and other metal ions, and iii) an Aliivibrio fischeri bioluminescent strain which is used to quantitatively assess sample toxicity and correct the analytical signal accordingly. Both sensory elements and substrates, Furimazine for the bioluminescent reporter strain and chlorophenol red-ß-D-galactopyranoside for colorimetric detection of ß-gal, were integrated in the paper sensor to provide a stable all-in-one disposable cartridge which can be easily snapped into a smartphone with a clover-shaped 3D printed housing. This is the first integration of bioluminescence and colorimetric detection on a smartphone-paper sensor, providing a readout within 15 and 60 min for the colorimetric and bioluminescent detection respectively. The biosensor was applied to water samples spiked with different concentrations of mercury, interferents and toxic chemicals providing a limit of detection for Hg(II) at the ppb levels.


Subject(s)
Biosensing Techniques , Mercury , Aliivibrio fischeri , Colorimetry , Smartphone
3.
Sensors (Basel) ; 21(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202483

ABSTRACT

Since the introduction of paper-based analytical devices as potential diagnostic platforms a few decades ago, huge efforts have been made in this field to develop systems suitable for meeting the requirements for the point-of-care (POC) approach. Considerable progress has been achieved in the adaptation of existing analysis methods to a paper-based format, especially considering the chemiluminescent (CL)-immunoassays-based techniques. The implementation of biospecific assays with CL detection and paper-based technology represents an ideal solution for the development of portable analytical devices for on-site applications, since the peculiarities of these features create a unique combination for fitting the POC purposes. Despite this, the scientific production is not paralleled by the diffusion of such devices into everyday life. This review aims to highlight the open issues that are responsible for this discrepancy and to find the aspects that require a focused and targeted research to make these methods really applicable in routine analysis.


Subject(s)
Biosensing Techniques , Luminescence , Immunoassay , Point-of-Care Systems
4.
Anal Chem ; 93(20): 7388-7393, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33973781

ABSTRACT

The availability of portable analytical devices for on-site monitoring and rapid detection of analytes of forensic, environmental, and clinical interest is vital. We report the development of a portable device for the detection of biochemiluminescence relying on silicon photomultiplier (SiPM) technology, called LuminoSiPM, which includes a 3D printed sample holder that can be adapted for both liquid samples and paper-based biosensing. We performed a comparison of analytical performance in terms of detectability with a benchtop luminometer, a portable cooled charge-coupled device (CCD sensor), and smartphone-integrated complementary metal oxide semiconductor (CMOS) sensors. As model systems, we used two luciferase/luciferin systems emitting at different wavelengths using purified protein solutions: the green-emitting P. pyralis mutant Ppy-GR-TS (λmax 550 nm) and the blue-emitting NanoLuc (λmax 460 nm). A limit of detection of 9 femtomoles was obtained for NanoLuc luciferase, about 2 and 3 orders of magnitude lower than that obtained with the portable CCD camera and with the smartphone, respectively. A proof-of-principle forensic application of LuminoSiPM is provided, exploiting an origami chemiluminescent paper-based sensor for acetylcholinesterase inhibitors, showing high potential for this portable low-cost device for on-site applications with adequate sensitivity for detecting low light intensities in critical fields.


Subject(s)
Biosensing Techniques , Luminescence , Light , Luciferases , Smartphone
5.
Sensors (Basel) ; 21(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572727

ABSTRACT

In recent years, there has been an increasing demand for predictive and sensitive in vitro tools for drug discovery. Split complementation assays have the potential to enlarge the arsenal of in vitro tools for compound screening, with most of them relying on well-established reporter gene assays. In particular, ligand-induced complementation of split luciferases is emerging as a suitable approach for monitoring protein-protein interactions. We hereby report an intracellular nanosensor for the screening of compounds with androgenic activity based on a split NanoLuc reporter. We also confirm the suitability of using 3D spheroids of Human Embryonic Kidney (HEK-293) cells for upgrading the 2D cell-based assay. A limit of detection of 4 pM and a half maximal effective concentration (EC50) of 1.7 ± 0.3 nM were obtained for testosterone with HEK293 spheroids. This genetically encoded nanosensor also represents a new tool for real time imaging of the activation state of the androgen receptor, thus being suitable for analysing molecules with androgenic activity, including new drugs or endocrine disrupting molecules.


Subject(s)
Androgens , Luminescent Measurements , Nanotechnology , Receptors, Androgen , Genes, Reporter , HEK293 Cells , Humans , Luciferases/genetics , Receptors, Androgen/genetics
6.
Luminescence ; 36(2): 278-293, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32945075

ABSTRACT

Recent advancements in synthetic biology, organic chemistry, and computational models have allowed the application of bioluminescence in several fields, ranging from well established methods for detecting microbial contamination to in vivo imaging to track cancer and stem cells, from cell-based assays to optogenetics. Moreover, thanks to recent technological progress in miniaturized and sensitive light detectors, such as photodiodes and imaging sensors, it is possible to implement laboratory-based assays, such as cell-based and enzymatic assays, into portable analytical devices for point-of-care and on-site applications. This review highlights some recent advances in the development of whole-cell and cell-free bioluminescence biosensors with a glance on current challenges and different strategies that have been used to turn bioassays into biosensors with the required analytical performance. Critical issues and unsolved technical problems are also highlighted, to give the reader a taste of this fascinating and challenging field.


Subject(s)
Biosensing Techniques
7.
Biosens Bioelectron ; 162: 112232, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32452394

ABSTRACT

The rapid hydrolysis of acetylcholine (ACh), one of the key neurotransmitters in the human body, by the enzyme acetylcholinesterase (AChE) is fundamental for the termination of ACh impulse transmission. Several chemicals, including organophosphorus (OP) pesticides, warfare agents and drugs, are AChE reversible or irreversible inhibitors, thus their rapid on-site detection is of primary importance. Here we report for the first time a chemiluminescence (CL) foldable paper-based biosensor for detection of AChE inhibitors. The biosensor exploits three coupled enzymatic reactions catalyzed by AChE, choline oxidase and horseradish peroxidase, leading to production of hydrogen peroxide, which is measured with an optimized luminol substrate. The origami approach allows to add reagents and trigger the sequential reactions in separate steps. A compact 3D-printed device including a mini dark box was created to enable smartphone detection. The CL foldable paper-based biosensor showed suitable for the rapid detection of OP pesticides in food matrices with a total assay time of 25 min. It is thus a rapid, low cost portable test suitable for point-of-need detection of chemicals inhibiting AChE.


Subject(s)
Biosensing Techniques/instrumentation , Cholinesterase Inhibitors/analysis , Luminescent Measurements/instrumentation , Organophosphorus Compounds/analysis , Pesticides/analysis , Acetylcholinesterase/metabolism , Animals , Electrophorus , Equipment Design , Food Contamination/analysis
8.
Analyst ; 145(8): 2841-2853, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32196042

ABSTRACT

The customization of disease treatment focused on genetic, environmental and lifestyle factors of individual patients, including tailored medical decisions and treatments, is identified as precision medicine. This approach involves the combination of various aspects such as the collection and processing of a large amount of data, the selection of optimized and personalized drug dosage for each patient and the development of selective and reliable analytical tools for the monitoring of clinical, genetic and environmental parameters. In this context, miniaturized, compact and ultrasensitive bioanalytical devices play a crucial role for achieving the goals of personalized medicine. In this review, the latest analytical technologies suitable for providing portable and easy-to-use diagnostic tools in clinical settings will be discussed, highlighting new opportunities arising from nanotechnologies, offering peculiar perspectives and opportunities for precision medicine.


Subject(s)
Biosensing Techniques/methods , Nanostructures/chemistry , Precision Medicine/methods , Biosensing Techniques/instrumentation , Humans , Paper , Precision Medicine/instrumentation , Smartphone , Wearable Electronic Devices
9.
Methods Mol Biol ; 2081: 3-14, 2020.
Article in English | MEDLINE | ID: mdl-31721114

ABSTRACT

3D cell culture models represent an attractive approach to decode intracellular and intercellular signaling, providing biologically relevant information and predictive data. Bioluminescent reporter gene assays and bioluminescence imaging in 3D cell models are very promising bioanalytical tools for several applications.Here we report a very straightforward method for bioluminescence imaging and bioluminescent reporter gene assays in 3D cell-culture models. Both the assays can be easily implemented in laboratories equipped with basic cell culture facilities and instrumentation for bioluminescence detection, that is, low-light detectors connected to inverted microscopes and luminometers, without the need for additional equipment.


Subject(s)
Gene Expression , Genes, Reporter , High-Throughput Screening Assays , Luminescent Measurements/methods , Cell Culture Techniques , Cell Line , Cells, Cultured , Data Analysis , Humans , Spheroids, Cellular
10.
Anal Chem ; 91(23): 15284-15292, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31690077

ABSTRACT

Whole-cell and cell-free transcription-translation biosensors have recently become favorable alternatives to conventional detection methods, as they are cost-effective, environmental friendly, and easy to use. Importantly, the biological responses from the biosensors need to be converted into a physicochemical signal for easy detection, and a variety of genetic reporters have been employed for this purpose. Reporter gene selection is vital to a sensor performance and application success. However, it was largely based on trial and error with very few systematic side-by-side investigations reported. To address this bottleneck, here we compared eight reporters from three reporter categories, i.e., fluorescent (gfpmut3, deGFP, mCherry, mScarlet-I), colorimetric (lacZ), and bioluminescent (luxCDABE from Aliivibrio fischeri and Photorhabdus luminescens, NanoLuc) reporters, under the control of two representative biosensors for mercury- and quorum-sensing molecules. Both whole-cell and cell-free formats were investigated to assess key sensing features including limit of detection (LOD), input and output dynamic ranges, response time, and output visibility. For both whole-cell biosensors, the lowest detectable concentration of analytes and the fastest responses were achieved with NanoLuc. Notably, we developed, to date, the most sensitive whole-cell mercury biosensor using NanoLuc as reporter, with an LOD ≤ 50.0 fM HgCl2 30 min postinduction. For cell-free biosensors, overall, NanoLuc and deGFP led to shorter response time and lower LOD than the others. This comprehensive profile of diverse reporters in a single setting provides a new important benchmark for reporter selection, aiding the rapid development of whole-cell and cell-free biosensors for various applications in the environment and health.


Subject(s)
Biosensing Techniques , Escherichia coli/genetics , Genes, Reporter/genetics , Aliivibrio fischeri/genetics , Escherichia coli/cytology , Mercury/analysis , Photorhabdus/genetics , Quorum Sensing
11.
Anal Bioanal Chem ; 411(19): 4937-4949, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30972468

ABSTRACT

Cell-based assays utilizing reporter gene technology have been widely exploited for biosensing, as they provide useful information about the bioavailability and cell toxicity of target analytes. The long assay time due to gene transcription and translation is one of the main drawbacks of cell biosensors. We report the development of two yeast biosensors stably expressing human estrogen receptors α and ß and employing NanoLuc as the reporter protein to upgrade the widely used yeast estrogen screening (YES) assays. A viability control strain was also developed based on a chimeric green-emitting luciferase, PLG2, expressed for the first time in Saccharomycescerevisiae. Thanks to their brightness, NanoLuc and PLG2 provided excellent sensitivity, enabling the implementation of these biosensors into low-cost smartphone-based devices. The developed biosensors had a rapid (1 h) response and reported on (anti)estrogenic activity via human estrogen receptors α and ß as well as general sample toxicity. Under optimized conditions, we obtained LODs of 7.1 ± 0.4 nM and 0.38 ± 0.08 nM for E2 with nanoYESα and nanoYESß, respectively. As a proof of concept, we analyzed real samples from plants showing significant estrogenic activity or known to contain significant amounts of phytoestrogens. Graphical abstract.


Subject(s)
Biosensing Techniques , Endocrine Disruptors/analysis , Luminescent Measurements/methods , Nanotechnology , Saccharomyces cerevisiae/metabolism , Smartphone , Genes, Reporter , Limit of Detection , Luciferases/genetics , Medicago sativa/chemistry , Plant Extracts/chemistry , Reproducibility of Results , Saccharomyces cerevisiae/genetics , Glycine max/chemistry , Water Pollutants, Chemical/analysis
12.
Biosens Bioelectron ; 123: 269-277, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30227987

ABSTRACT

Whole-cell biosensors present many advantages, including being able to monitor the toxicity and bioavailability of chemicals; cells grown in traditional 2D cultures, however, do not reproduce the complexity of in vivo physiology. In the last years, 3D cell-culture models have garnered great attention due to their capability to better mimic in vivo cellular responses to external stimuli, providing excellent model living organisms. In order to obtain a predictive, sensitive, and robust yet low-cost 3D cell biosensor, we developed a smartphone-based bioluminescent 3D cell biosensor platform for effect-based analysis. We exploited the Nuclear Factor-kappa B (NF-kB) signal transduction pathway, which is induced by several types of stressors and is involved in the regulation of cell-cycle/growth, inflammation, apoptosis, and immunity. The smartphone-based biosensor relies on immobilized HEK293 spheroids genetically engineered with powerful red- and green-emitting luciferases utilized as inflammation and viability reporters. It provides a limit of detection for Tumor Necrosis Factor (TNFα) of 0.15 ±â€¯0.05 ng/mL and could be a useful tool to initially screen environmental samples or other compounds on-site, especially for additional more accurate chemical analyses.


Subject(s)
Biosensing Techniques , Inflammation/diagnosis , Luminescent Measurements , Tumor Necrosis Factor-alpha/isolation & purification , HEK293 Cells , Humans , Inflammation/genetics , NF-kappa B/genetics , Signal Transduction/genetics , Smartphone , Spheroids, Cellular , Tumor Necrosis Factor-alpha/genetics
13.
Anal Bioanal Chem ; 410(4): 1237-1246, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28965124

ABSTRACT

The presence of chemicals with estrogenic activity in surface, groundwater, and drinking water poses serious concerns for potential threats to human health and aquatic life. At present, no sensitive portable devices are available for the rapid monitoring of such contamination. Here, we propose a cell-based mobile platform that exploits a newly developed bioluminescent yeast-estrogen screen (nanoYES) and a low-cost compact camera as light detector. Saccharomyces cerevisiae cells were genetically engineered with a yeast codon-optimized variant of NanoLuc luciferase (yNLucP) under the regulation of human estrogen receptor α activation. Ready-to-use 3D-printed cartridges with immobilized cells were prepared by optimizing a new procedure that enables to produce alginate slices with good reproducibility. A portable device was obtained exploiting a compact camera and wireless connectivity enabling a rapid and quantitative evaluation (1-h incubation at room temperature) of total estrogenic activity in small sample volumes (50 µL) with a LOD of 0.08 nM for 17ß-estradiol. The developed portable analytical platform was applied for the evaluation of water samples spiked with different chemicals known to have estrogen-like activity. Thanks to the high sensitivity of the newly developed yeast biosensor and the possibility to wireless connect the camera with any smartphone model, the developed configuration is more versatile than previously reported smartphone-based devices, and could find application for on-site analysis of endocrine disruptors. Graphical abstract Wireless effect-based detection of endocrine-disrupting chemicals with nanoYES platform.


Subject(s)
Biosensing Techniques , Endocrine Disruptors/analysis , Estrogens/analysis , Photography/instrumentation , Saccharomyces cerevisiae/metabolism , Water Pollutants, Chemical/analysis , Wireless Technology , Luminescence , Printing, Three-Dimensional
14.
Photochem Photobiol ; 93(2): 531-535, 2017 03.
Article in English | MEDLINE | ID: mdl-28084029

ABSTRACT

Bioluminescent (BL) cell-based assays based on two-dimensional (2D) monolayer cell cultures represent well-established bioanalytical tools for preclinical screening of drugs. However, cells in 2D cultures do not often reflect the morphology and functionality of living organisms, thus limiting the predictive value of 2D cell-based assays. Conversely, 3D cell models have the capability to generate the extracellular matrix and restore cell-to-cell communications; thus, they are the most suitable model to mimic in vivo physiology. In this work, we developed a nondestructive real-time BL imaging assay of spheroids for longitudinal studies on 3D cell models. A high-throughput BL 3D cell-based assay in micropatterned 96-well plate format is reported. The assay performance was assessed using the transcriptional regulation of nuclear factor K beta response element in human embryonic kidney (HEK293) cells. We compared concentration-response curves for tumor necrosis factor-α with those obtained using conventional 2D cell cultures. One of the main advantages of this approach is the nonlysing nature of the assay, which allows for repetitive measurements on the same sample. The assay can be implemented in any laboratory equipped with basic cell culture facilities and paves the way to the development of new 3D bioluminescent cell-based assays.


Subject(s)
Luminescence , Models, Biological , Spheroids, Cellular , Cell Culture Techniques , Extracellular Matrix/metabolism , HEK293 Cells , Humans , Inflammation/metabolism , NF-kappa B/metabolism , Tumor Cells, Cultured
15.
Anal Bioanal Chem ; 408(30): 8859-8868, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27853830

ABSTRACT

The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. Graphical abstract Smartphone-based bioluminescence cell biosensor.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Biosensing Techniques/instrumentation , Luciferases/genetics , Luminescent Measurements/instrumentation , Plant Extracts/pharmacology , Smartphone/instrumentation , Anti-Inflammatory Agents/chemistry , Equipment Design , Genes, Reporter , Genetic Engineering , HEK293 Cells , Humans , Limit of Detection , Luciferases/metabolism , Plant Extracts/chemistry , Reproducibility of Results , Vitis/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...