Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Psychopharmacology (Berl) ; 237(9): 2673-2684, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32488350

ABSTRACT

RATIONALE: Caveolin-1 (CAV1) is a structural protein critical for spatial organization of neuronal signaling molecules. Whether CAV1 is required for long-lasting neuronal plasticity remains unknown. OBJECTIVE AND METHODS: We sought to examine the effects of CAV1 knockout (KO) on functional plasticity and hypothesized that CAV1 deficiency would impact drug-induced long-term plasticity in the nucleus accumbens (NAc). We first examined cell morphology of NAc medium spiny neurons in a striatal/cortical co-culture system before moving in vivo to study effects of CAV1 KO on cocaine-induced plasticity. Whole-cell patch-clamp recordings were performed to determine effects of chronic cocaine (15 mg/kg) on medium spiny neuron excitability. To test for deficits in behavioral plasticity, we examined the effect of CAV1 KO on locomotor sensitization. RESULTS: Disruption of CAV1 expression leads to baseline differences in medium spiny neuron (MSN) structural morphology, such that MSNs derived from CAV1 KO animals have increased dendritic arborization when cultured with cortical neurons. The effect was dependent on phospholipase C and cell-type intrinsic loss of CAV1. Slice recordings of nucleus accumbens shell MSNs revealed that CAV1 deficiency produces a loss of neuronal plasticity. Specifically, cocaine-induced firing rate depression was absent in CAV1 KO animals, whereas baseline electrophysiological properties were similar. This was reflected by a loss of cocaine-mediated behavioral sensitization in CAV1 KO animals, with unaffected baseline locomotor responsiveness. CONCLUSIONS: This study highlights a critical role for nucleus accumbens CAV1 in plasticity related to the administration of drugs of abuse.


Subject(s)
Caveolin 1/deficiency , Neuronal Plasticity/physiology , Neurons/drug effects , Neurons/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Animals , Caveolin 1/genetics , Cocaine/pharmacology , Coculture Techniques , Dopamine Uptake Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurites/metabolism , Neuronal Plasticity/drug effects , Patch-Clamp Techniques
2.
Curr Sex Health Rep ; 12(3): 186-194, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33574737

ABSTRACT

PURPOSE OF REVIEW: This review aims to discuss sex differences observed in preclinical rodent models of opioid reward. RECENT FINDINGS: Utilizing a variety of methodological approaches and drug regimens, no clear consensus has emerged regarding the effects of opiates between males and females. This is quite dissimilar to work examining psychostimulants, where female animals reliably exhibit stronger behavioral responses. SUMMARY: With opioid research quickly expanding to determine the neural underpinnings of opioid addiction, further research is essential to determine the conditions wherein sex differences may occur and how they may relate to the human condition.

3.
Bioorg Med Chem ; 27(13): 2883-2892, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31126822

ABSTRACT

Anti-HIV-1 drug design has been notably challenging due to the virus' ability to mutate and develop immunity against commercially available drugs. The aims of this project were to develop a series of fleximer base analogues that not only possess inherent flexibility that can remain active when faced with binding site mutations, but also target a non-canonical, highly conserved target: the nucleocapsid protein of HIV (NC). The compounds were predicted by computational studies not to function via zinc ejection, which would endow them with significant advantages over non-specific and thus toxic zinc-ejectors. The target fleximer bases were synthesized using palladium-catalyzed cross-coupling techniques and subsequently tested against NC and HIV-1. The results of those studies are described herein.


Subject(s)
Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , HIV-1/genetics , Nucleocapsid Proteins/genetics , Humans , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL