Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35591583

ABSTRACT

In this study, a novel epoxidized vegetable oil (EVO) from chia seed oil (CSO) has been obtained, with the aim to be employed in a great variety of green products related to the polymeric industry, as plasticizers and compatibilizers. Previous to the epoxidation process characterization, the fatty acid (FA) composition of CSO was analyzed using gas chromatography (GC). Epoxidation of CSO has been performed using peracetic acid formed in situ with hydrogen peroxide and acetic acid, applying sulfuric acid as catalyst. The effects of key parameters as temperature (60, 70, and 75 °C), the molar ratio of hydrogen peroxide:double bond (H2O2:DB) (0.75:1.0 and 1.50:1.0), and reaction time (0-8 h) were evaluated to obtain the highest relative oxirane oxygen yield (Yoo). The evaluation of the epoxidation process was carried out through iodine value (IV), oxirane oxygen content (Oo), epoxy equivalent weight (EEW), and selectivity (S). The main functional groups were identified by means of FTIR and 1H NMR spectroscopy. Physical properties were compared in the different assays. The study of different parameters showed that the best epoxidation conditions were carried out at 75 °C and H2O2:DB (1.50:1), obtaining an Oo value of 8.26% and an EEW of 193 (g·eq-1). These high values, even higher than those obtained for commercial epoxidized oils such as soybean or linseed oil, show the potential of the chemical modification of chia seed oil to be used in the development of biopolymers.

2.
Polymers (Basel) ; 13(14)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34301027

ABSTRACT

The present works focuses on the development of a novel fully bio-based composite using a bio-based high-density polyethylene (Bio-HDPE) obtained from sugar cane as matrix and a by-product of extraction of chia seed oil (CO) as filler, with the objective of achieving a circular economy model. The research aims to revalorize an ever-increasing waste stream produced by the growing interest in vegetable oils. From the technical point of view, the chia seed flour (CSF) was chemically modified using a silane treatment. This treatment provides a better interfacial adhesion as was evidenced by the mechanical and thermal properties as well as field emission scanning electron microscopy (FESEM). The effect of silane treatment on water uptake and disintegration rate was also studied. On the other hand, in a second stage, an optimization of the percentage of treated CSF used as filler was carried out by a complete series of mechanical, thermal, morphological, colour, water absorption and disintegration tests with the aim to evaluate the new composite developed using chia by-products. It is noteworthy as the disintegration rate increased with the addition of CSF filler, which leads to obtain a partially biodegradable wood plastic composite (WPC) and therefore, becoming more environmentally friendly.

3.
Polymers (Basel) ; 13(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33920060

ABSTRACT

The use of a new bio-based plasticizer derived from epoxidized chia seed oil (ECO) was applied in a poly(lactic acid) (PLA) matrix. ECO was used due to its high epoxy content (6.7%), which led to an improved chemical interaction with PLA. Melt extrusion was used to plasticize PLA with different ECO content in the 0-10 wt.% range. Mechanical, morphological, and thermal characterization was carried out to evaluate the effect of ECO percentage. Besides, disintegration and migration tests were studied to assess the future application in packaging industry. Ductile properties improve by 700% in elongation at break with 10 wt.% ECO content. Field emission scanning electron microscopy (FESEM) showed a phase separation with ECO content equal or higher than 7.5 wt.%. Thermal stabilization was improved 14 °C as ECO content increased. All plasticized PLA was disintegrated under composting conditions, not observing a delay up to 5 wt.% ECO. Migration tests pointed out a very low migration, less than 0.11 wt.%, which is to interest to the packaging industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...