Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1379228, 2024.
Article in English | MEDLINE | ID: mdl-38745956

ABSTRACT

Aims: Individuals with lipodystrophies typically suffer from metabolic disease linked to adipose tissue dysfunction including lipoatrophic diabetes. In the most severe forms of lipodystrophy, congenital generalised lipodystrophy, adipose tissue may be almost entirely absent. Better therapies for affected individuals are urgently needed. Here we performed the first detailed investigation of the effects of a glucagon like peptide-1 receptor (GLP-1R) agonist in lipoatrophic diabetes, using mice with generalised lipodystrophy. Methods: Lipodystrophic insulin resistant and glucose intolerant seipin knockout mice were treated with the GLP-1R agonist liraglutide either acutely preceding analyses of insulin and glucose tolerance or chronically prior to metabolic phenotyping and ex vivo studies. Results: Acute liraglutide treatment significantly improved insulin, glucose and pyruvate tolerance. Once daily injection of seipin knockout mice with liraglutide for 14 days led to significant improvements in hepatomegaly associated with steatosis and reduced markers of liver fibrosis. Moreover, liraglutide enhanced insulin secretion in response to glucose challenge with concomitantly improved glucose control. Conclusions: GLP-1R agonist liraglutide significantly improved lipoatrophic diabetes and hepatic steatosis in mice with generalised lipodystrophy. This provides important insights regarding the benefits of GLP-1R agonists for treating lipodystrophy, informing more widespread use to improve the health of individuals with this condition.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Lipodystrophy , Liraglutide , Animals , Male , Mice , Blood Glucose/metabolism , Disease Models, Animal , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Insulin Resistance , Lipodystrophy/drug therapy , Lipodystrophy/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Mice, Inbred C57BL , Mice, Knockout
2.
Cell Metab ; 36(5): 1076-1087.e4, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38653246

ABSTRACT

Approximately 1 in 4 people worldwide have non-alcoholic fatty liver disease (NAFLD); however, there are currently no medications to treat this condition. This study investigated the role of adiposity-associated orphan G protein-coupled receptor 75 (GPR75) in liver lipid accumulation. We profiled Gpr75 expression and report that it is most abundant in the brain. Next, we generated the first single-cell-level analysis of Gpr75 and identified a subpopulation co-expressed with key appetite-regulating hypothalamic neurons. CRISPR-Cas9-deleted Gpr75 mice fed a palatable western diet high in fat adjusted caloric intake to remain in energy balance, thereby preventing NAFLD. Consistent with mouse results, analysis of whole-exome sequencing data from 428,719 individuals (UK Biobank) revealed that variants in GPR75 are associated with a reduced likelihood of hepatic steatosis. Here, we provide a significant advance in understanding of the expression and function of GPR75, demonstrating that it is a promising pharmaceutical target for NAFLD treatment.


Subject(s)
Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Mice , Humans , Male , Adipose Tissue/metabolism , Mice, Knockout , Liver/metabolism , Female , Adiposity
3.
Mol Metab ; 84: 101933, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583571

ABSTRACT

OBJECTIVE: Alström Syndrome (AS), caused by biallelic ALMS1 mutations, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and fatty liver. Prior studies suggest that hyperphagia is accounted for by loss of ALMS1 function in hypothalamic neurones, whereas disproportionate metabolic complications may be due to impaired adipose tissue expandability. We tested this by comparing the metabolic effects of global and mesenchymal stem cell (MSC)-specific Alms1 knockout. METHODS: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα-Cre driver was used to abrogate Alms1 function selectively in MSCs and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα+ Alms1-KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. RESULTS: Assessed on 45% fat diet to promote adipose expansion, global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα-cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfrα expression. CONCLUSIONS: Mesenchymal deletion of Alms1 recapitulates metabolic features of AS, including fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. Hyperphagia in females may depend on Alms1 deficiency in oligodendrocyte precursor cells rather than neurones. AS should be regarded as a forme fruste of lipodystrophy.


Subject(s)
Alstrom Syndrome , Mesenchymal Stem Cells , Mice, Knockout , Animals , Mice , Male , Female , Mesenchymal Stem Cells/metabolism , Alstrom Syndrome/metabolism , Alstrom Syndrome/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Insulin Resistance , Fatty Liver/metabolism , Fatty Liver/genetics , Obesity/metabolism , Obesity/genetics , Hyperphagia/metabolism , Hyperphagia/genetics , Adipose Tissue/metabolism , Mice, Inbred C57BL , Body Composition
4.
Curr Biol ; 34(8): 1646-1656.e4, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38518777

ABSTRACT

The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.


Subject(s)
Arcuate Nucleus of Hypothalamus , Brain Stem , Feeding Behavior , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/physiology , Animals , Brain Stem/physiology , Brain Stem/metabolism , Mice , Male , Feeding Behavior/physiology , GABAergic Neurons/physiology , GABAergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Eating/physiology , Mice, Inbred C57BL , Female
5.
bioRxiv ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37873427

ABSTRACT

Background: Alström Syndrome (AS), a multi-system disease caused by mutations in the ALMS1 gene, includes obesity with disproportionately severe insulin resistant diabetes, dyslipidemia, and hepatosteatosis. How loss of ALMS1 causes this phenotype is poorly understood, but prior studies have circumstancially implicated impaired adipose tissue expandability. We set out to test this by comparing the metabolic effects of selective Alms1 knockout in mesenchymal cells including preadipocytes to those of global Alms1 knockout. Methods: Global Alms1 knockout (KO) mice were generated by crossing floxed Alms1 and CAG-Cre mice. A Pdgfrα -Cre driver was used to abrogate Alms1 function selectively in mesenchymal stem cells (MSCs) and their descendants, including preadipocytes. We combined metabolic phenotyping of global and Pdgfrα + Alms1 -KO mice on a 45% fat diet with measurements of body composition and food intake, and histological analysis of metabolic tissues. Results: Global Alms1 KO caused hyperphagia, obesity, insulin resistance, dyslipidaemia, and fatty liver. Pdgfrα - cre driven KO of Alms1 (MSC KO) recapitulated insulin resistance, fatty liver, and dyslipidaemia in both sexes. Other phenotypes were sexually dimorphic: increased fat mass was only present in female Alms1 MSC KO mice. Hyperphagia was not evident in male Alms1 MSC KO mice, but was found in MSC KO females, despite no neuronal Pdgfr α expression. Conclusions: Mesenchymal deletion of Alms1 recapitulates the metabolic features of AS, including severe fatty liver. This confirms a key role for Alms1 in the adipose lineage, where its loss is sufficient to cause systemic metabolic effects and damage to remote organs. AS should be regarded as a forme fruste of lipodystrophy. Therapies should prioritise targeting positive energy balance.

6.
Neuropharmacology ; 241: 109758, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37827445

ABSTRACT

Obesity has become a worldwide health challenge and commonly results from the intake of more calories than the body requires. The brain represents the master controller of food intake and as such has been the target of obesity medications. However, key mechanisms of druggable targets remain to be defined. Neurons within the arcuate nucleus of the hypothalamus co-expressing neuropeptide Y (NPY), agouti-related protein (AgRP) and GABA (NAG) are fundamental stimulators of hunger and food intake. NAG neurons also inhibit local satiety-promoting pro-opiomelanocortin (POMC) neurons. Agonists of the 1B subtype of metabotropic serotonin receptor (5-HT1BR) reduce food intake in part through the inhibition of hunger-promoting NAG neurons. We first confirmed that 5-HT1BR activation suppressed intake of a palatable Western diet in a mouse model of common dietary-induced obesity and genetically prone obesity. Next, we combined several electrophysiological approaches to analyse the effect of 5-HT1BRs in NAG neuron cell activity and GABA release. 5-HT1BR activation reduced NAG neuron action potential frequency and neurotransmitter release. We found that 5-HT1BR impact on GABA release from NAG neurons is mediated through voltage-gated Ca2+ channels with a critical input from glutamate receptors of AMPA subtype (AMPARs). As a fundamental outcome, this type of interplay provides an uncommon example of metabotropic action of AMPARs which regulates inhibitory signalling due to modulation of GABA release. As a translational outcome, our results provide a key mechanism through which 5-HT1BR drugs inhibit appetite-stimulating neurons within the brain to suppress food intake. This article is part of the Special Issue on "Ukrainian Neuroscience".


Subject(s)
Receptors, AMPA , Serotonin , Mice , Animals , Serotonin/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Mice, Transgenic , Receptors, AMPA/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Carrier Proteins/metabolism , gamma-Aminobutyric Acid/metabolism , Obesity/metabolism , Pro-Opiomelanocortin/metabolism , Agouti-Related Protein/metabolism
7.
Cell ; 186(19): 4189-4203.e22, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37633268

ABSTRACT

Thrombopoietin (THPO or TPO) is an essential cytokine for hematopoietic stem cell (HSC) maintenance and megakaryocyte differentiation. Here, we report the 3.4 Å resolution cryoelectron microscopy structure of the extracellular TPO-TPO receptor (TpoR or MPL) signaling complex, revealing the basis for homodimeric MPL activation and providing a structural rationalization for genetic loss-of-function thrombocytopenia mutations. The structure guided the engineering of TPO variants (TPOmod) with a spectrum of signaling activities, from neutral antagonists to partial- and super-agonists. Partial agonist TPOmod decoupled JAK/STAT from ERK/AKT/CREB activation, driving a bias for megakaryopoiesis and platelet production without causing significant HSC expansion in mice and showing superior maintenance of human HSCs in vitro. These data demonstrate the functional uncoupling of the two primary roles of TPO, highlighting the potential utility of TPOmod in hematology research and clinical HSC transplantation.


Subject(s)
Receptors, Thrombopoietin , Thrombopoietin , Animals , Humans , Mice , Cell Cycle , Cryoelectron Microscopy , Receptors, Thrombopoietin/genetics , Thrombopoiesis , DNA Methylation
8.
Physiol Rep ; 11(15): e15793, 2023 08.
Article in English | MEDLINE | ID: mdl-37568262

ABSTRACT

AIMS: Stanniocalcin-2 (STC2) has recently been implicated in human muscle mass variability by genetic analysis. Biochemically, STC2 inhibits the proteolytic activity of the metalloproteinase PAPP-A, which promotes muscle growth by upregulating the insulin-like growth factor (IGF) axis. The aim was to examine if STC2 affects skeletal muscle mass and to assess how the IGF axis mediates muscle hypertrophy induced by functional overload. METHODS: We compared muscle mass and muscle fiber morphology between Stc2-/- (n = 21) and wild-type (n = 15) mice. We then quantified IGF1, IGF2, IGF binding proteins -4 and -5 (IGFBP-4, IGFBP-5), PAPP-A and STC2 in plantaris muscles of wild-type mice subjected to 4-week unilateral overload (n = 14). RESULTS: Stc2-/- mice showed up to 10% larger muscle mass compared with wild-type mice. This increase was mediated by greater cross-sectional area of muscle fibers. Overload increased plantaris mass and components of the IGF axis, including quantities of IGF1 (by 2.41-fold, p = 0.0117), IGF2 (1.70-fold, p = 0.0461), IGFBP-4 (1.48-fold, p = 0.0268), PAPP-A (1.30-fold, p = 0.0154) and STC2 (1.28-fold, p = 0.019). CONCLUSION: Here we provide evidence that STC2 is an inhibitor of muscle growth upregulated, along with other components of the IGF axis, during overload-induced muscle hypertrophy.


Subject(s)
Insulin-Like Growth Factor Binding Protein 4 , Peptide Hormones , Animals , Mice , Glycoproteins/genetics , Glycoproteins/metabolism , Hypertrophy , Insulin-Like Growth Factor Binding Protein 4/metabolism , Insulin-Like Growth Factor I/metabolism , Muscle, Skeletal/metabolism , Peptide Hormones/metabolism , Pregnancy-Associated Plasma Protein-A/genetics
9.
ACS Synth Biol ; 12(4): 1081-1093, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37011906

ABSTRACT

In recent years, targeted protein degradation (TPD) of plasma membrane proteins by hijacking the ubiquitin proteasome system (UPS) or the lysosomal pathway has emerged as a novel therapeutic avenue in drug development to address and inhibit canonically difficult targets. While TPD strategies have been successful in targeting cell surface receptors, these approaches are limited by the availability of suitable binders to generate heterobifunctional molecules. Here, we present the development of a nanobody (VHH)-based degradation toolbox termed REULR (Receptor Elimination by E3 Ubiquitin Ligase Recruitment). We generated human and mouse cross-reactive nanobodies against five transmembrane PA-TM-RING-type E3 ubiquitin ligases (RNF128, RNF130, RNF167, RNF43, and ZNRF3), covering a broad range and selectivity of tissue expression, with which we characterized the expression in human and mouse cell lines and immune cells (PBMCs). We demonstrate that heterobifunctional REULR molecules can enforce transmembrane E3 ligase interactions with a variety of disease-relevant target receptors (EGFR, EPOR, and PD-1) by induced proximity, resulting in effective membrane clearance of the target receptor at varying levels. In addition, we designed E3 ligase self-degrading molecules, "fratricide" REULRs (RNF128, RNF130, RENF167, RNF43, and ZNRF3), that allow downregulation of one or several E3 ligases from the cell surface and consequently modulate receptor signaling strength. REULR molecules represent a VHH-based modular and versatile "mix and match" targeting strategy for the facile modulation of cell surface proteins by induced proximity to transmembrane PA-TM-RING E3 ligases.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin-Protein Ligases , Humans , Animals , Mice , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Proteasome Endopeptidase Complex/metabolism , Carrier Proteins/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism
10.
Mol Metab ; 68: 101665, 2023 02.
Article in English | MEDLINE | ID: mdl-36592795

ABSTRACT

OBJECTIVE: Overweight and obesity are endemic in developed countries, with a substantial negative impact on human health. Medications developed to treat obesity include agonists for the G-protein coupled receptors glucagon-like peptide-1 (GLP-1R; e.g. liraglutide), serotonin 2C (5-HT2CR; e.g, lorcaserin), and melanocortin4 (MC4R) which reduce body weight primarily by suppressing food intake. However, the mechanisms underlying the therapeutic food intake suppressive effects are still being defined and were investigated here. METHODS: We profiled PPG neurons in the nucleus of the solitary tract (PPGNTS) using single nucleus RNA sequencing (Nuc-Seq) and histochemistry. We next examined the requirement of PPGNTS neurons for obesity medication effects on food intake by virally ablating PPGNTS neurons. Finally, we assessed the effects on food intake of the combination of liraglutide and lorcaserin. RESULTS: We found that 5-HT2CRs, but not GLP-1Rs or MC4Rs, were widespread in PPGNTS clusters and that lorcaserin significantly activated PPGNTS neurons. Accordingly, ablation of PPGNTS neurons prevented the reduction of food intake by lorcaserin but not MC4R agonist melanotan-II, demonstrating the functional significance of PPGNTS 5-HT2CR expression. Finally, the combination of lorcaserin with GLP-1R agonists liraglutide or exendin-4 produced greater food intake reduction as compared to either monotherapy. CONCLUSIONS: These findings identify a necessary mechanism through which obesity medication lorcaserin produces its therapeutic benefit, namely brainstem PPGNTS neurons. Moreover, these data reveal a strategy to augment the therapeutic profile of the current frontline treatment for obesity, GLP-1R agonists, via coadministration with 5-HT2CR agonists.


Subject(s)
Glucagon-Like Peptide 1 , Liraglutide , Humans , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/metabolism , Serotonin/metabolism , Appetite , Obesity/drug therapy , Obesity/metabolism , Solitary Nucleus/metabolism , Eating , Neurons/metabolism
11.
Blood ; 141(11): 1337-1352, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36564052

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative option for patients with hematological disorders and bone marrow (BM) failure syndromes. Graft-versus-host disease (GVHD) remains a leading cause of morbidity posttransplant. Regulatory T cell (Treg) therapies are efficacious in ameliorating GVHD but limited by variable suppressive capacities and the need for a high therapeutic dose. Here, we sought to expand Treg in vivo by expressing an orthogonal interleukin 2 receptor ß (oIL-2Rß) that would selectively interact with oIL-2 cytokine and not wild-type (WT) IL-2. To test whether the orthogonal system would preferentially drive donor Treg expansion, we used a murine major histocompatibility complex-disparate GVHD model of lethally irradiated BALB/c mice given T cell-depleted BM from C57BL/6 (B6) mice alone or together with B6Foxp3+GFP+ Treg or oIL-2Rß-transduced Treg at low cell numbers that typically do not control GVHD with WT Treg. On day 2, B6 activated T cells (Tcons) were injected to induce GVHD. Recipients were treated with phosphate-buffered saline (PBS) or oIL-2 daily for 14 days, then 3 times weekly for an additional 14 days. Mice treated with oIL-2Rß Treg and oIL-2 compared with those treated with PBS had enhanced GVHD survival, in vivo selective expansion of Tregs, and greater suppression of Tcon expansion in secondary lymphoid organs and intestines. Importantly, oIL-2Rß Treg maintained graft-versus-tumor (GVT) responses in 2 distinct tumor models (A20 and MLL-AF9). These data demonstrate a novel approach to enhance the efficacy of Treg therapy in allo-HSCT using an oIL-2/oIL-2Rß system that allows for selective in vivo expansion of Treg leading to GVHD protection and GVT maintenance.


Subject(s)
Graft vs Host Disease , Neoplasms , Animals , Mice , T-Lymphocytes, Regulatory , Interleukin-2/pharmacology , Mice, Inbred C57BL , Bone Marrow Transplantation , Cytokines , Graft vs Host Disease/prevention & control , Mice, Inbred BALB C
13.
ACS Synth Biol ; 11(10): 3426-3439, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36169352

ABSTRACT

Natural killer (NK) cells are a major subset of innate immune cells that are essential for host defense against pathogens and cancer. Two main classes of inhibitory NK receptors (NKR), KIR and CD94/NKG2A, play a key role in suppressing NK activity upon engagement with tumor cells or virus-infected cells, limiting their antitumor and antiviral activities. Here, we find that single-chain NKR antagonists linked to a VHH that binds the cell surface phosphatase CD45 potentiate NK and T activities to a greater extent than NKR blocking antibodies alone in vitro. We also uncovered crosstalk between NKG2A and Ly49 that collectively inhibit NK cell activation, such that CD45-NKG2A and CD45-Ly49 bispecific molecules show synergistic effects in their ability to enhance NK cell activation. The basis of the activity enhancement by CD45 ligation may reflect greater antagonism of inhibitory signaling from engagement of MHC I on target cells, combined with other mechanisms, including avidity effects, tonic signaling, antagonism of weak inhibition from engagement of MHC I on non-target cells, and possible CD45 segregation within the NK cell-target cell synapse. These results uncover a strategy for enhancing the activity of NK and T cells that may improve cancer immunotherapies.


Subject(s)
NK Cell Lectin-Like Receptor Subfamily C , Receptors, Immunologic , Receptors, Natural Killer Cell , Antibodies, Blocking , Receptors, Immunologic/metabolism , Antigens, CD/metabolism , Antiviral Agents
14.
Am J Transplant ; 22(12): 3061-3068, 2022 12.
Article in English | MEDLINE | ID: mdl-36031344

ABSTRACT

Clinical trials utilizing regulatory T cell (Treg) therapy in organ transplantation have shown promising results, however, the choice of a standard immunosuppressive regimen is still controversial. Calcineurin inhibitors (CNIs) are one of the most common immunosuppressants for organ transplantation, although they may negatively affect Tregs by inhibiting IL-2 production by conventional T cells. As a strategy to replace IL-2 signaling selectively in Tregs, we have introduced an engineered orthogonal IL-2 (ortho IL-2) cytokine/cytokine receptor (R) pair that specifically binds with each other but does not bind with their wild-type counterparts. Murine Tregs were isolated from recipients and retrovirally transduced with ortho IL-2Rß during ex vivo expansion. Transduced Tregs (ortho Tregs) were transferred into recipient mice in a mixed hematopoietic chimerism model with tacrolimus administration. Ortho IL-2 treatment significantly increased the ortho IL-2Rß(+) Treg population in the presence of tacrolimus without stimulating other T cell subsets. All the mice treated with tacrolimus plus ortho IL-2 achieved heart allograft tolerance, even after tacrolimus cessation, whereas those receiving tacrolimus treatment alone did not. These data demonstrate that Treg therapy can be adopted into a CNI-based regimen by utilizing cytokine receptor engineering.


Subject(s)
Calcineurin Inhibitors , Tacrolimus , Mice , Animals , Calcineurin Inhibitors/pharmacology , Tacrolimus/therapeutic use , T-Lymphocytes, Regulatory , Interleukin-2/metabolism , Receptors, Interleukin-2 , Graft Survival , Immunosuppressive Agents/therapeutic use
15.
Nature ; 607(7918): 360-365, 2022 07.
Article in English | MEDLINE | ID: mdl-35676488

ABSTRACT

Synthetic receptor signalling has the potential to endow adoptively transferred T cells with new functions that overcome major barriers in the treatment of solid tumours, including the need for conditioning chemotherapy1,2. Here we designed chimeric receptors that have an orthogonal IL-2 receptor extracellular domain (ECD) fused with the intracellular domain (ICD) of receptors for common γ-chain (γc) cytokines IL-4, IL-7, IL-9 and IL-21 such that the orthogonal IL-2 cytokine elicits the corresponding γc cytokine signal. Of these, T cells that signal through the chimeric orthogonal IL-2Rß-ECD-IL-9R-ICD (o9R) are distinguished by the concomitant activation of STAT1, STAT3 and STAT5 and assume characteristics of stem cell memory and effector T cells. Compared to o2R T cells, o9R T cells have superior anti-tumour efficacy in two recalcitrant syngeneic mouse solid tumour models of melanoma and pancreatic cancer and are effective even in the absence of conditioning lymphodepletion. Therefore, by repurposing IL-9R signalling using a chimeric orthogonal cytokine receptor, T cells gain new functions, and this results in improved anti-tumour activity for hard-to-treat solid tumours.


Subject(s)
Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive , Interleukin Receptor Common gamma Subunit , Neoplasms , Receptors, Interleukin-9 , Recombinant Fusion Proteins , T-Lymphocytes , Animals , Cell- and Tissue-Based Therapy/methods , Immunotherapy, Adoptive/methods , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/immunology , Interleukins/genetics , Interleukins/immunology , Melanoma/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Pancreatic Neoplasms/immunology , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , STAT Transcription Factors/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
16.
Proc Natl Acad Sci U S A ; 119(22): e2200568119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35588144

ABSTRACT

Cyclic dinucleotides (CDN) and Toll-like receptor (TLR) ligands mobilize antitumor responses by natural killer (NK) cells and T cells, potentially serving as complementary therapies to immune checkpoint therapy. In the clinic thus far, however, CDN therapy targeting stimulator of interferon genes (STING) protein has yielded mixed results, perhaps because it initiates responses potently but does not provide signals to sustain activation and proliferation of activated cytotoxic lymphocytes. To improve efficacy, we combined CDN with a half life-extended interleukin-2 (IL-2) superkine, H9-MSA (mouse serum albumin). CDN/H9-MSA therapy induced dramatic long-term remissions of the most difficult to treat major histocompatibility complex class I (MHC I)­deficient and MHC I+ tumor transplant models. H9-MSA combined with CpG oligonucleotide also induced potent responses. Mechanistically, tumor elimination required CD8 T cells and not NK cells in the case of MHC I+ tumors and NK cells but not CD8 T cells in the case of MHC-deficient tumors. Furthermore, combination therapy resulted in more prolonged and more intense NK cell activation, cytotoxicity, and expression of cytotoxic effector molecules in comparison with monotherapy. Remarkably, in a primary autochthonous sarcoma model that is refractory to PD-1 checkpoint therapy, the combination of CDN/H9-MSA with checkpoint therapy yielded long-term remissions in the majority of the animals, mediated by T cells and NK cells. This combination therapy has the potential to activate responses in tumors resistant to current therapies and prevent MHC I loss accompanying acquired resistance of tumors to checkpoint therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Histocompatibility Antigens Class I , Immunotherapy , Interleukin-2 , Membrane Proteins , Neoplasms , Nucleotides, Cyclic , Oligodeoxyribonucleotides , Serum Albumin , Animals , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/genetics , Humans , Immunotherapy/methods , Interleukin-2/immunology , Killer Cells, Natural/immunology , Membrane Proteins/agonists , Mice , Neoplasms/genetics , Neoplasms/therapy , Nucleotides, Cyclic/therapeutic use , Oligodeoxyribonucleotides/therapeutic use , Serum Albumin/therapeutic use
17.
Cell ; 185(8): 1414-1430.e19, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35325595

ABSTRACT

Cytokines are powerful immune modulators that initiate signaling through receptor dimerization, but natural cytokines have structural limitations as therapeutics. We present a strategy to discover cytokine surrogate agonists by using modular ligands that exploit induced proximity and receptor dimer geometry as pharmacological metrics amenable to high-throughput screening. Using VHH and scFv to human interleukin-2/15, type-I interferon, and interleukin-10 receptors, we generated combinatorial matrices of single-chain bispecific ligands that exhibited diverse spectrums of functional activities, including potent inhibition of SARS-CoV-2 by surrogate interferons. Crystal structures of IL-2R:VHH complexes revealed that variation in receptor dimer geometries resulted in functionally diverse signaling outputs. This modular platform enabled engineering of surrogate ligands that compelled assembly of an IL-2R/IL-10R heterodimer, which does not naturally exist, that signaled through pSTAT5 on T and natural killer (NK) cells. This "cytokine med-chem" approach, rooted in principles of induced proximity, is generalizable for discovery of diversified agonists for many ligand-receptor systems.


Subject(s)
COVID-19 , Cytokines , Humans , Interleukin-2/pharmacology , Killer Cells, Natural , Ligands , Receptors, Interleukin-10 , SARS-CoV-2
18.
Proc Natl Acad Sci U S A ; 119(12): e2117401119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35294290

ABSTRACT

Affinity maturation of protein­protein interactions is an important approach in the development of therapeutic proteins such as cytokines. Typical experimental strategies involve targeting the cytokine-receptor interface with combinatorial libraries and then selecting for higher-affinity variants. Mutations to the binding scaffold are usually not considered main drivers for improved affinity. Here we demonstrate that computational design can provide affinity-enhanced variants of interleukin-2 (IL-2) "out of the box" without any requirement for interface engineering. Using a strategy of global IL-2 structural stabilization targeting metastable regions of the three-dimensional structure, rather than the receptor binding interfaces, we computationally designed thermostable IL-2 variants with up to 40-fold higher affinity for IL-2Rß without any library-based optimization. These IL-2 analogs exhibited CD25-independent activities on T and natural killer (NK) cells both in vitro and in vivo, mimicking the properties of the IL-2 superkine "super-2" that was engineered through yeast surface display [A. M. Levin et al., Nature, 484, 529­533 (2012)]. Structure-guided stabilization of cytokines is a powerful approach to affinity maturation with applications to many cytokine and protein­protein interactions.


Subject(s)
Interleukin-2 , Proteins , Computational Biology/methods , Interleukin-2/genetics , Protein Engineering/methods , Proteins/metabolism , Saccharomyces cerevisiae/metabolism
19.
J Interpers Violence ; 37(9-10): NP8032-NP8055, 2022 05.
Article in English | MEDLINE | ID: mdl-33251908

ABSTRACT

Though college women report high rates of sexual assault, less is known about how protective and risk factors are uniquely associated with assault among heterosexual and sexual minority women. As such, the current study examined protective factors (i.e., maternal relationship quality and religiosity) and risk factors (i.e., child sexual abuse, parent substance misuse, and risky behaviors) for coercive sexual assault and total sexual assault and whether they vary by sexual orientation among college women. Data were gathered in the 2013-2014 academic year at two large public universities in the United States, one in the Midwest and one in the Southeast. Data for the current study included 755 college women, 72 (9.5%) of whom identified as sexual minority. Bivariate results showed that heterosexual women reported greater maternal relationship quality and greater religiosity compared to sexual minority women, while sexual minority women reported more risky sexual behaviors and having experienced more coercive sexual assault than heterosexual women. Multivariate results revealed that child sexual abuse, parent drinking problems, maternal relationship quality, heavy drinking, hooking up, and risky sexual behaviors were significantly associated with total sexual assault. Significant correlates of coercive sexual assault included child sexual abuse, maternal relationship quality, hooking up, and risky sexual behaviors. The relationship between maternal relationship quality and total sexual assault varied by sexual orientation as did the relationship between hooking up and coercive sexual assault. These findings have implications for targeted interventions to improve prevention of sexual assault among heterosexual and sexual minority college women.


Subject(s)
Child Abuse, Sexual , Sex Offenses , Sexual and Gender Minorities , Child , Female , Heterosexuality , Humans , Male , Risk Factors , Sexual Behavior , United States , Universities
20.
J Interpers Violence ; 37(13-14): NP12495-NP12518, 2022 07.
Article in English | MEDLINE | ID: mdl-33703948

ABSTRACT

Though previous research has examined survivors' use of formal and informal services, less research has looked at whether sexual orientation, race, and different sexual assault types (e.g., coercive) are associated with seeking support services. The purpose of this study is to examine factors associated with utilizing services or support from informal sources (e.g., telling a friend) and formal sources (e.g., psychological counseling) following a sexual assault. Data were gathered in Fall and Spring of 2019-2020 from undergraduate students at a Midwestern university. Logistic regression results showed that heterosexual students had 56% lower odds of using informal supports, while females were 2.05 times more likely to have used informal supports compared to their counterparts. Students who reported more heavy drinking had 37% lower odds of using informal supports compared to their counterparts. Those who experienced physical and incapacitated sexual assault were 2.09 times and 3.60 times more likely to have used informal supports, respectively. Additionally, older students were 1.35 times more likely to have used formal supports compared to younger students, whereas heterosexual students had 67% lower odds of using formal supports compared to sexual minority students. Those with greater PTSD symptoms were 1.07 times more likely to access formal services. Finally, students with greater depressive symptoms had 8% lower odds of using formal supports. Identifying college students who are less likely to access support services following a sexual assault has important implications for targeted prevention and intervention.


Subject(s)
Crime Victims , Sex Offenses , Crime Victims/psychology , Female , Humans , Male , Sex Offenses/psychology , Students/psychology , Surveys and Questionnaires , Universities
SELECTION OF CITATIONS
SEARCH DETAIL
...