Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (169)2021 03 20.
Article in English | MEDLINE | ID: mdl-33818565

ABSTRACT

The preparation of well diffracting crystals and their handling before their X-ray analysis are two critical steps of biocrystallographic studies. We describe a versatile microfluidic chip that enables the production of crystals by the efficient method of counter-diffusion. The convection-free environment provided by the microfluidic channels is ideal for crystal growth and useful to diffuse a substrate into the active site of the crystalline enzyme. Here we applied this approach to the CCA-adding enzyme of the psychrophilic bacterium Planococcus halocryophilus in the presented example. After crystallization and substrate diffusion/soaking, the crystal structure of the enzyme:substrate complex was determined at room temperature by serial crystallography and the analysis of multiple crystals directly inside the chip. The whole procedure preserves the genuine diffraction properties of the samples because it requires no crystal handling.


Subject(s)
Crystallization/methods , Enzymes/chemistry , Microfluidics/methods
2.
Proc Natl Acad Sci U S A ; 117(20): 10848-10855, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32371486

ABSTRACT

Grapevine fanleaf virus (GFLV) is a picorna-like plant virus transmitted by nematodes that affects vineyards worldwide. Nanobody (Nb)-mediated resistance against GFLV has been created recently, and shown to be highly effective in plants, including grapevine, but the underlying mechanism is unknown. Here we present the high-resolution cryo electron microscopy structure of the GFLV-Nb23 complex, which provides the basis for molecular recognition by the Nb. The structure reveals a composite binding site bridging over three domains of one capsid protein (CP) monomer. The structure provides a precise mapping of the Nb23 epitope on the GFLV capsid in which the antigen loop is accommodated through an induced-fit mechanism. Moreover, we uncover and characterize several resistance-breaking GFLV isolates with amino acids mapping within this epitope, including C-terminal extensions of the CP, which would sterically interfere with Nb binding. Escape variants with such extended CP fail to be transmitted by nematodes linking Nb-mediated resistance to vector transmission. Together, these data provide insights into the molecular mechanism of Nb23-mediated recognition of GFLV and of virus resistance loss.


Subject(s)
Nepovirus/drug effects , Plant Diseases/immunology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/pharmacology , Animals , Antibodies, Viral/immunology , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/drug effects , Cryoelectron Microscopy , Epitopes/chemistry , Models, Molecular , Nematoda/virology , Nepovirus/ultrastructure , Plant Diseases/virology , Plant Leaves/virology , Plant Viruses/immunology , Plant Viruses/physiology , Protein Conformation , Vitis
3.
Methods Mol Biol ; 2113: 189-215, 2020.
Article in English | MEDLINE | ID: mdl-32006316

ABSTRACT

Over the past two decades small-angle X-ray scattering (SAXS) has become a popular method to characterize solutions of biomolecules including ribonucleic acid (RNA). In an integrative structural approach, SAXS is complementary to crystallography, NMR, and electron microscopy and provides information about RNA architecture and dynamics. This chapter highlights the practical advantages of combining size-exclusion chromatography and SAXS at synchrotron facilities. It is illustrated by practical case studies of samples ranging from single hairpins and tRNA to a large IRES. The emphasis is also put on sample preparation which is a critical step of SAXS analysis and on optimized protocols for in vitro RNA synthesis ensuring the production of mg amount of pure and homogeneous molecules.


Subject(s)
Chromatography, Gel/instrumentation , RNA/chemistry , X-Ray Diffraction/instrumentation , Models, Molecular , Scattering, Small Angle , Synchrotrons
4.
IUCrJ ; 6(Pt 3): 454-464, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31098026

ABSTRACT

Determining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine 'non-model' and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip concept.

5.
ACS Infect Dis ; 5(6): 1022-1034, 2019 06 14.
Article in English | MEDLINE | ID: mdl-30912430

ABSTRACT

Bacterial sliding clamps control the access of DNA polymerases to the replication fork and are appealing targets for antibacterial drug development. It is therefore essential to decipher the polymerase-clamp binding mode across various bacterial species. Here, two residues of the E. coli clamp binding pocket, EcS346 and EcM362, and their cognate residues in M. tuberculosis and B. subtilis clamps, were mutated. The effects of these mutations on the interaction of a model peptide with these variant clamps were evaluated by thermodynamic, molecular dynamics, X-rays crystallography, and biochemical analyses. EcM362 and corresponding residues in Gram positive clamps occupy a strategic position where a mobile residue is essential for an efficient peptide interaction. EcS346 has a more subtle function that modulates the pocket folding dynamics, while the equivalent residue in B. subtilis is essential for polymerase activity and might therefore be a Gram positive-specific molecular marker. Finally, the peptide binds through an induced-fit process to Gram negative and positive pockets, but the complex stability varies according to a pocket-specific network of interactions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Gram-Positive Bacteria/drug effects , Peptides/pharmacology , Crystallography, X-Ray , DNA-Directed DNA Polymerase/metabolism , Drug Development , Escherichia coli/genetics , Gram-Positive Bacteria/genetics , Ligands , Models, Molecular , Mutation , Nucleic Acid Synthesis Inhibitors , Peptides/chemistry , Protein Binding , Protein Conformation
6.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 11): 747-753, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30387781

ABSTRACT

The determination of conditions for the reproducible growth of well diffracting crystals is a critical step in every biocrystallographic study. On the occasion of a new structural biology project, several advanced crystallogenesis approaches were tested in order to increase the success rate of crystallization. These methods included screening by microseed matrix screening, optimization by counter-diffusion and crystal detection by trace fluorescent labeling, and are easily accessible to any laboratory. Their combination proved to be particularly efficient in the case of the target, a 48 kDa CCA-adding enzyme from the psychrophilic bacterium Planococcus halocryophilus. A workflow summarizes the overall strategy, which led to the production of crystals that diffracted to better than 2 Šresolution and may be of general interest for a variety of applications.


Subject(s)
Bacterial Proteins/chemistry , Crystallization/methods , Planococcus Bacteria/enzymology , RNA Nucleotidyltransferases/chemistry , Crystallography, X-Ray , Escherichia coli/genetics , RNA Nucleotidyltransferases/genetics , RNA Nucleotidyltransferases/metabolism , Recombinant Proteins/genetics , Workflow
7.
Plant Biotechnol J ; 16(2): 660-671, 2018 02.
Article in English | MEDLINE | ID: mdl-28796912

ABSTRACT

Since their discovery, single-domain antigen-binding fragments of camelid-derived heavy-chain-only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode-transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell-to-cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.


Subject(s)
Plant Diseases/immunology , Plant Diseases/virology , Nepovirus/pathogenicity , Plant Viruses/genetics , Plant Viruses/physiology , Single-Domain Antibodies/genetics , Single-Domain Antibodies/physiology
9.
Sci Rep ; 5: 17332, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26620921

ABSTRACT

Mutations in human mitochondrial aminoacyl-tRNA synthetases are associated with a variety of neurodegenerative disorders. The effects of these mutations on the structure and function of the enzymes remain to be established. Here, we investigate six mutants of the aspartyl-tRNA synthetase correlated with leukoencephalopathies. Our integrated strategy, combining an ensemble of biochemical and biophysical approaches, reveals that mutants are diversely affected with respect to their solubility in cellular extracts and stability in solution, but not in architecture. Mutations with mild effects on solubility occur in patients as allelic combinations whereas those with strong effects on solubility or on aminoacylation are necessarily associated with a partially functional allele. The fact that all mutations show individual molecular and cellular signatures and affect amino acids only conserved in mammals, points towards an alternative function besides aminoacylation.


Subject(s)
Aspartate-tRNA Ligase/metabolism , Leukoencephalopathies/enzymology , Mitochondrial Proteins/metabolism , Mutation , Animals , Aspartate-tRNA Ligase/genetics , Cell Line , Cricetinae , Enzyme Stability/genetics , Humans , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Mitochondrial Proteins/genetics
10.
J Med Chem ; 57(18): 7565-76, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25170813

ABSTRACT

Bacterial sliding clamps are molecular hubs that interact with many proteins involved in DNA metabolism through their binding, via a conserved peptidic sequence, into a universally conserved pocket. This interacting pocket is acknowledged as a potential molecular target for the development of new antibiotics. We previously designed short peptides with an improved affinity for the Escherichia coli binding pocket. Here we show that these peptides differentially interact with other bacterial clamps, despite the fact that all pockets are structurally similar. Thermodynamic and modeling analyses of the interactions differentiate between two categories of clamps: group I clamps interact efficiently with our designed peptides and assemble the Escherichia coli and related orthologs clamps, whereas group II clamps poorly interact with the same peptides and include Bacillus subtilis and other Gram-positive clamps. These studies also suggest that the peptide binding process could occur via different mechanisms, which depend on the type of clamp.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , DNA Replication , Peptides/metabolism , Amino Acid Sequence , Anti-Bacterial Agents/metabolism , Binding Sites , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Sequence Alignment , Thermodynamics
11.
Nat Commun ; 4: 1503, 2013.
Article in English | MEDLINE | ID: mdl-23422671

ABSTRACT

Major stumbling blocks in the production of fully synthetic materials designed to feature virus recognition properties are that the target is large and its self-assembled architecture is fragile. Here we describe a synthetic strategy to produce organic/inorganic nanoparticulate hybrids that recognize non-enveloped icosahedral viruses in water at concentrations down to the picomolar range. We demonstrate that these systems bind a virus that, in turn, acts as a template during the nanomaterial synthesis. These virus imprinted particles then display remarkable selectivity and affinity. The reported method, which is based on surface imprinting using silica nanoparticles that act as a carrier material and organosilanes serving as biomimetic building blocks, goes beyond simple shape imprinting. We demonstrate the formation of a chemical imprint, comparable to the formation of biosilica, due to the template effect of the virion surface on the synthesis of the recognition material.


Subject(s)
Molecular Imprinting/methods , Nanostructures/chemistry , Viruses/metabolism , Binding, Competitive , Colloids , Kinetics , Nanostructures/ultrastructure , Silicon Dioxide/chemistry , Surface Properties , Tombusvirus/chemistry , Tombusvirus/ultrastructure , Tymovirus/chemistry , Tymovirus/ultrastructure , Virion/chemistry , Virion/ultrastructure , Viruses/ultrastructure
12.
Nucleic Acids Res ; 41(4): 2698-708, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23275545

ABSTRACT

In the mammalian mitochondrial translation apparatus, the proteins and their partner RNAs are coded by two genomes. The proteins are nuclear-encoded and resemble their homologs, whereas the RNAs coming from the rapidly evolving mitochondrial genome have lost critical structural information. This raises the question of molecular adaptation of these proteins to their peculiar partner RNAs. The crystal structure of the homodimeric bacterial-type human mitochondrial aspartyl-tRNA synthetase (DRS) confirmed a 3D architecture close to that of Escherichia coli DRS. However, the mitochondrial enzyme distinguishes by an enlarged catalytic groove, a more electropositive surface potential and an alternate interaction network at the subunits interface. It also presented a thermal stability reduced by as much as 12°C. Isothermal titration calorimetry analyses revealed that the affinity of the mitochondrial enzyme for cognate and non-cognate tRNAs is one order of magnitude higher, but with different enthalpy and entropy contributions. They further indicated that both enzymes bind an adenylate analog by a cooperative allosteric mechanism with different thermodynamic contributions. The larger flexibility of the mitochondrial synthetase with respect to the bacterial enzyme, in combination with a preserved architecture, may represent an evolutionary process, allowing nuclear-encoded proteins to cooperate with degenerated organelle RNAs.


Subject(s)
Aspartate-tRNA Ligase/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Mitochondria/enzymology , Thermodynamics , Aspartate-tRNA Ligase/metabolism , Enzyme Stability , Escherichia coli Proteins/metabolism , Humans , Models, Molecular , RNA, Transfer/metabolism
13.
Biochem Mol Biol Educ ; 40(6): 372-82, 2012.
Article in English | MEDLINE | ID: mdl-23166025

ABSTRACT

Dynamic light scattering (DLS) analyses are routinely used in biology laboratories to detect aggregates in macromolecular solutions, to determine the size of proteins, nucleic acids, and complexes or to monitor the binding of ligands. This article is written for graduate and undergraduate students with access to DLS and for faculty members who wish to incorporate DLS into a lab activity, a practical course or research. It reviews the basic concepts of light scattering measurements and addresses four critical aspects of the analysis and interpretation of DLS results. To ensure reproducible quantitative data, attention should be paid to controlling the preparation and handling of proteins or assemblies because variations in the state of aggregation, induced by minor changes in experimental condition or technique, might compromise DLS results and affect protein activity. Variables like temperature, solvent viscosity, and inter-particle interactions may also influence particle size determination. Every point is illustrated by case studies, including a commercially available albumin, a small RNA virus isolated from plants, as well as four soluble proteins and a ribonucleoprotein assembly purified and characterized by students in the frame of their master degree.


Subject(s)
Biochemistry/education , Light , Proteins/analysis , Proteins/chemistry , Scattering, Radiation , Humans , Students
14.
Protein Eng Des Sel ; 25(9): 473-81, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22871419

ABSTRACT

Mitochondrial aminoacyl-tRNA synthetases are key enzymes in translation. They are encoded by the nuclear genome, synthesized as precursors in the cytosol and imported. Most are matured by cleavage of their N-terminal targeting sequence. The poor expression of mature proteins in prokaryotic systems, along with their low solubility and stability after purification are major obstacles for biophysical and crystallographic studies. The purpose of the present work was to analyze the influence of additives on a slightly soluble aspartyl-tRNA synthetase and of the N-terminal sequence of the protein on its expression and solubility. On the one hand, the solubility of the enzyme was augmented to some extent in the presence of a chemical analog of the intermediary product aspartyl-adenylate, 5'-O-[N-(L aspartyl) sulfamoyl] adenosine. On the other hand, expression was enhanced by extending the N-terminus by seven natural amino acids from the predicted targeting sequence. The re-designed enzyme was active, monodisperse, more soluble and yielded crystals that are suitable for structure determination. This result underlines the importance of the N-terminal residue sequence for solubility. It suggests that additional criteria should be taken into account for the prediction of cleavage sites in mitochondrial targeting sequences.


Subject(s)
Aspartate-tRNA Ligase/chemistry , Aspartate-tRNA Ligase/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Protein Engineering/methods , Amino Acid Sequence , Aspartate-tRNA Ligase/isolation & purification , Aspartate-tRNA Ligase/metabolism , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Gene Expression , Humans , Mitochondrial Proteins/isolation & purification , Mitochondrial Proteins/metabolism , Molecular Sequence Data , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Solubility
15.
Protein Pept Lett ; 19(7): 725-31, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22489780

ABSTRACT

The outcome of protein crystallization attempts is often uncertain due to inherent features of the protein or to the crystallization process that are not fully under control of the experimentalist. The aim of this contribution is to propose user-friendly tools that can increase the success rate of a protein crytallization project. Different bioinformatic approaches to predict the crystallization feasibility (before any crystallization attempts are undertaken) are discussed and a novel approach to assess the nucleation process of a given protein is proposed. Practical examples illustrate these two points.


Subject(s)
Crystallization/methods , Proteins/chemistry , Computational Biology , X-Ray Diffraction
16.
Nucleic Acids Res ; 40(11): 4965-76, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22362756

ABSTRACT

Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.


Subject(s)
Aspartate-tRNA Ligase/metabolism , Helicobacter pylori/enzymology , Nitrogenous Group Transferases/metabolism , RNA, Transfer, Asn/metabolism , Transfer RNA Aminoacylation , Asparagine/metabolism , Aspartic Acid/metabolism , Genetic Code , Kinetics , RNA, Transfer, Asp/metabolism
17.
J Mol Biol ; 412(3): 437-52, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-21820443

ABSTRACT

Asparagine synthetase A (AsnA) catalyzes asparagine synthesis using aspartate, ATP, and ammonia as substrates. Asparagine is formed in two steps: the ß-carboxylate group of aspartate is first activated by ATP to form an aminoacyl-AMP before its amidation by a nucleophilic attack with an ammonium ion. Interestingly, this mechanism of amino acid activation resembles that used by aminoacyl-tRNA synthetases, which first activate the α-carboxylate group of the amino acid to form also an aminoacyl-AMP before they transfer the activated amino acid onto the cognate tRNA. In a previous investigation, we have shown that the open reading frame of Pyrococcus abyssi annotated as asparaginyl-tRNA synthetase (AsnRS) 2 is, in fact, an archaeal asparagine synthetase A (AS-AR) that evolved from an ancestral aspartyl-tRNA synthetase (AspRS). We present here the crystal structure of this AS-AR. The fold of this protein is similar to that of bacterial AsnA and resembles the catalytic cores of AspRS and AsnRS. The high-resolution structures of AS-AR associated with its substrates and end-products help to understand the reaction mechanism of asparagine formation and release. A comparison of the catalytic core of AS-AR with those of archaeal AspRS and AsnRS and with that of bacterial AsnA reveals a strong conservation. This study uncovers how the active site of the ancestral AspRS rearranged throughout evolution to transform an enzyme activating the α-carboxylate group into an enzyme that is able to activate the ß-carboxylate group of aspartate, which can react with ammonia instead of tRNA.


Subject(s)
Aspartate-Ammonia Ligase/chemistry , Pyrococcus abyssi/enzymology , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Ammonia/chemistry , Ammonia/metabolism , Asparagine/chemistry , Asparagine/metabolism , Aspartate-Ammonia Ligase/metabolism , Aspartate-tRNA Ligase/chemistry , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Catalytic Domain , Crystallography, X-Ray , Evolution, Molecular , Models, Molecular , Protein Structure, Tertiary , Pyrococcus abyssi/chemistry , RNA, Transfer, Amino Acyl/chemistry
18.
Nucleic Acids Res ; 39(21): 9306-15, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21813455

ABSTRACT

In many bacteria and archaea, an ancestral pathway is used where asparagine and glutamine are formed from their acidic precursors while covalently linked to tRNA(Asn) and tRNA(Gln), respectively. Stable complexes formed by the enzymes of these indirect tRNA aminoacylation pathways are found in several thermophilic organisms, and are called transamidosomes. We describe here a transamidosome forming Gln-tRNA(Gln) in Helicobacter pylori, an ε-proteobacterium pathogenic for humans; this transamidosome displays novel properties that may be characteristic of mesophilic organisms. This ternary complex containing the non-canonical GluRS2 specific for Glu-tRNA(Gln) formation, the tRNA-dependent amidotransferase GatCAB and tRNA(Gln) was characterized by dynamic light scattering. Moreover, we observed by interferometry a weak interaction between GluRS2 and GatCAB (K(D) = 40 ± 5 µM). The kinetics of Glu-tRNA(Gln) and Gln-tRNA(Gln) formation indicate that conformational shifts inside the transamidosome allow the tRNA(Gln) acceptor stem to interact alternately with GluRS2 and GatCAB despite their common identity elements. The integrity of this dynamic transamidosome depends on a critical concentration of tRNA(Gln), above which it dissociates into separate GatCAB/tRNA(Gln) and GluRS2/tRNA(Gln) complexes. Ester bond protection assays show that both enzymes display a good affinity for tRNA(Gln) regardless of its aminoacylation state, and support a mechanism where GluRS2 can hydrolyze excess Glu-tRNA(Gln), ensuring faithful decoding of Gln codons.


Subject(s)
Glutamate-tRNA Ligase/metabolism , Helicobacter pylori/enzymology , Nitrogenous Group Transferases/metabolism , RNA, Transfer, Amino Acyl/metabolism , RNA, Transfer, Gln/metabolism , Helicobacter pylori/genetics , Hydrolysis , Interferometry , Kinetics , Models, Biological , RNA Stability
19.
PLoS Pathog ; 7(5): e1002034, 2011 May.
Article in English | MEDLINE | ID: mdl-21625570

ABSTRACT

Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV), a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP), carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD) poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp) in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector.


Subject(s)
Capsid Proteins/genetics , Nematoda/virology , Nepovirus , Protein Structure, Quaternary , Amino Acid Substitution , Animals , Capsid , Mutation , Nepovirus/genetics , Nepovirus/metabolism , Nepovirus/ultrastructure , Plant Diseases/genetics , Plant Diseases/virology , Plant Viruses/genetics , RNA, Viral/genetics , Sequence Alignment , Sequence Analysis, Protein , Static Electricity , X-Ray Diffraction
20.
J Struct Biol ; 174(2): 344-51, 2011 May.
Article in English | MEDLINE | ID: mdl-21352920

ABSTRACT

The small icosahedral plant RNA nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by a nematode and causes major damage to vineyards worldwide. To elucidate the molecular mechanisms underlying the recognition between the surface of its protein capsid and cellular components of its vector, host and viral proteins synthesized upon infection, the wild type GFLV strain F13 and a natural mutant (GFLV-TD) carrying a Gly297Asp mutation were purified, characterized and crystallized. Subsequently, the geometry and volume of their crystals was optimized by establishing phase diagrams. GFLV-TD was twice as soluble as the parent virus in the crystallization solution and its crystals diffracted X-rays to a resolution of 2.7 Å. The diffraction limit of GFLV-F13 crystals was extended from 5.5 to 3 Å by growth in agarose gel. Preliminary crystallographic analyses indicate that both types of crystals are suitable for structure determination. Keys for the successful production of GFLV crystals include the rigorous quality control of virus preparations, crystal quality improvement using phase diagrams, and crystal lattice reinforcement by growth in agarose gel. These strategies are applicable to the production of well-diffracting crystals of other viruses and macromolecular assemblies.


Subject(s)
Nepovirus/chemistry , Vitis/virology , Crystallization , Crystallography, X-Ray , Particle Size , Sepharose/chemistry , Solubility , Virion/chemistry , Virion/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...