Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Steroids ; 190: 109153, 2023 02.
Article in English | MEDLINE | ID: mdl-36481216

ABSTRACT

Brassinosteroids are plant hormones whose main function is to stimulate plant growth. However, they have been studied for their biological applications in humans. Brassinosteroid compounds have displayed an important role in the study of cancer pathology and show potential for developing novel anticancer drugs. In this review we describe the relationship of brassinosteroids with cancer with focus on the last decade, the mechanisms of cytotoxic activity described to date, and a structure-activity relationship based on the available information.


Subject(s)
Neoplasms , Steroids, Heterocyclic , Humans , Brassinosteroids/pharmacology , Plant Growth Regulators/pharmacology , Structure-Activity Relationship , Neoplasms/drug therapy , Steroids, Heterocyclic/pharmacology
2.
Molecules ; 25(11)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492956

ABSTRACT

We present the synthesis and structural study of a new peptidomimetic of morphiceptin, which can formally be considered as the result of the replacement of the central proline residue of this natural analgesic drug with a subunit of (1S,2R,3S,4S,5R)-2-amino-3,4,5-trihydroxycyclopentane-1-carboxylic acid, previously obtained from L-idose. An optimized synthesis of this trihydroxylated cispentacin derivative is also reported. Molecular docking calculations on the target receptor support a favorable role of the hydroxy substituents of the non-natural ß-amino acid incorporated into the peptidomimetic.


Subject(s)
Analgesics/chemistry , Carboxylic Acids/chemistry , Chemistry Techniques, Synthetic/methods , Endorphins/chemistry , Peptidomimetics/chemistry , Algorithms , Binding Sites , Chemistry, Pharmaceutical/methods , Computer Simulation , Drug Design , Ligands , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Peptides/chemistry , Proline/chemistry , Sugars/chemistry , Temperature
3.
Eur J Med Chem ; 198: 112368, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32388114

ABSTRACT

During the last decade, the one drug-one target strategy has resulted to be inefficient in facing diseases with complex ethiology like Alzheimer's disease and many others. In this context, the multitarget paradigm has emerged as a promising strategy. Based on this consideration, we aim to develop novel molecules as promiscuous ligands acting in two or more targets at the same time. For such purpose, a new series of indolylpropyl-piperazinyl oxoethyl-benzamido piperazines were synthesized and evaluated as multitarget-directed drugs for the serotonin transporter (SERT) and acetylcholinesterase (AChE). The ability to decrease ß-amyloid levels as well as cell toxicity of all compounds were also measured. In vitro results showed that at least four compounds displayed promising activity against SERT and AChE. Compounds 18 and 19 (IC50 = 3.4 and 3.6 µM respectively) exhibited AChE inhibition profile in the same order of magnitude as donepezil (DPZ, IC50 = 2.17 µM), also displaying nanomolar affinity in SERT. Moreover, compounds 17 and 24 displayed high SERT affinities (IC50 = 9.2 and 1.9 nM respectively) similar to the antidepressant citalopram, and significant micromolar AChE activity at the same time. All the bioactive compounds showed a low toxicity profile in the range of concentrations studied. Molecular docking allowed us to rationalize the binding mode of the synthesized compounds in both targets. In addition, we also show that compounds 11 and 25 exhibit significant ß-amyloid lowering activity in a cell-based assay, 11 (50% inhibition, 10 µM) and 25 (35% inhibition, 10 µM). These results suggest that indolylpropyl benzamidopiperazines based compounds constitute promising leads for a multitargeted approach for Alzheimer's disease.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Antidepressive Agents/chemical synthesis , Cholinesterase Inhibitors/chemical synthesis , Piperazines/chemical synthesis , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Serotonin Plasma Membrane Transport Proteins/metabolism , Amyloid beta-Peptides/metabolism , Animals , Antidepressive Agents/pharmacology , Cell Line , Cholinesterase Inhibitors/pharmacology , Donepezil/chemistry , Drug Design , Humans , Mice , Molecular Docking Simulation , Neuroblastoma , Piperazines/pharmacology , Protein Conformation , Selective Serotonin Reuptake Inhibitors/pharmacology , Structure-Activity Relationship
4.
Int J Mol Sci ; 20(10)2019 May 21.
Article in English | MEDLINE | ID: mdl-31117309

ABSTRACT

Fatty Acid Amide Hydrolase (FAAH) is one of the main enzymes responsible for endocannabinoid metabolism. Inhibition of FAAH increases endogenous levels of fatty acid ethanolamides such as anandamide (AEA) and thus consitutes an indirect strategy that can be used to modulate endocannabinoid tone. In the present work, we present a three-dimensional quantitative structure-activity relationships/comparative molecular similarity indices analysis (3D-QSAR/CoMSIA) study on a series of 90 reported irreversible inhibitors of FAAH sharing a piperazine-carboxamide scaffold. The model obtained was extensively validated (q2 = 0.734; r2 = 0.966; r2m = 0.723). Finally, based on the information derived from the contour maps we designed a series of 10 new compounds with high predicted FAAH inhibition (predicted pIC50 of the best-proposed compounds = 12.196; 12.416).


Subject(s)
Amidohydrolases/antagonists & inhibitors , Cannabinoids/pharmacology , Quantitative Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Humans , Ligands
5.
Molecules ; 23(5)2018 May 16.
Article in English | MEDLINE | ID: mdl-29772697

ABSTRACT

The wide tissue distribution of the adrenergic ß3 receptor makes it a potential target for the treatment of multiple pathologies such as diabetes, obesity, depression, overactive bladder (OAB), and cancer. Currently, there is only one drug on the market, mirabegron, approved for the treatment of OAB. In the present study, we have carried out an extensive structure-activity relationship analysis of a series of 41 aryloxypropanolamine compounds based on three-dimensional quantitative structure-activity relationship (3D-QSAR) techniques. This is the first combined comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) study in a series of selective aryloxypropanolamines displaying anti-diabetes and anti-obesity pharmacological profiles. The best CoMFA and CoMSIA models presented values of r²ncv = 0.993 and 0.984 and values of r²test = 0.865 and 0.918, respectively. The results obtained were subjected to extensive external validation (q², r², r²m, etc.) and a final series of compounds was designed and their biological activity was predicted (best pEC50 = 8.561).


Subject(s)
Adrenergic beta-3 Receptor Agonists/chemistry , Anti-Obesity Agents/chemistry , Hypoglycemic Agents/chemistry , Propanolamines/chemistry , Adrenergic beta-3 Receptor Agonists/pharmacology , Anti-Obesity Agents/pharmacology , Binding Sites , Drug Design , Humans , Hypoglycemic Agents/pharmacology , Models, Molecular , Molecular Structure , Propanolamines/pharmacology , Quantitative Structure-Activity Relationship , Static Electricity
6.
Eur J Pharm Sci ; 101: 1-10, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28137469

ABSTRACT

The preceding years have brought an exponential increase in our understanding of the endocannabinoid system (ECS), including the knowledge of CB1 and CB2 cannabinoid receptors, endocannabinoids, and the enzymes that synthesize and degrade endocannabinoids. Among these ECS components CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential to treat numerous pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. Recently, our research group has reported a new series of non-cytotoxic benzo[d]imidazoles and benzo[b]thiophenes displaying high CB2/CB1 selectivity index. In order to investigate the structural requirements for CB2 ligands and to derive a predictive model that can be used for the design of novel selective CB2 ligands, a three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on the above mentioned chemical series employing comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques. The CoMFA and CoMSIA models displayed high external predictability (rpred2 0.919 and 0.908) and good statistical robustness. Valuable information regarding the steric, electrostatic and hydrophobic properties of the molecules was obtained, and several modifications around both heterocycles were evaluated with the aim to generate new promising series of benzo[d]imidazoles and benzo[b]thiophenes derivatives displaying high CB2 selectivity and low toxicity.


Subject(s)
Benzimidazoles/chemistry , Receptor, Cannabinoid, CB2/chemistry , Thiophenes/chemistry , Cannabinoids/chemistry , Hydrophobic and Hydrophilic Interactions , Ligands , Models, Molecular , Quantitative Structure-Activity Relationship , Receptor, Cannabinoid, CB1/chemistry , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...