Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 5558, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365709

ABSTRACT

The ongoing COVID-19 pandemic let to efforts to develop and deploy digital contact tracing systems to expedite contact tracing and risk notification. Unfortunately, the success of these systems has been limited, partly owing to poor interoperability with manual contact tracing, low adoption rates, and a societally sensitive trade-off between utility and privacy. In this work, we introduce a new privacy-preserving and inclusive system for epidemic risk assessment and notification that aims to address these limitations. Rather than capturing pairwise encounters between user devices as done by existing systems, our system captures encounters between user devices and beacons placed in strategic locations where infection clusters may originate. Epidemiological simulations using an agent-based model demonstrate that, by utilizing location and environmental information and interoperating with manual contact tracing, our system can increase the accuracy of contact tracing actions and may help reduce epidemic spread already at low adoption.


Subject(s)
COVID-19 , Pandemics , Auscultation , COVID-19/epidemiology , COVID-19/prevention & control , Contact Tracing , Humans , Pandemics/prevention & control , Privacy
2.
PLoS Comput Biol ; 18(3): e1010008, 2022 03.
Article in English | MEDLINE | ID: mdl-35344547

ABSTRACT

Testing is recommended for all close contacts of confirmed COVID-19 patients. However, existing pooled testing methods are oblivious to the circumstances of contagion provided by contact tracing. Here, we build upon a well-known semi-adaptive pooled testing method, Dorfman's method with imperfect tests, and derive a simple pooled testing method based on dynamic programming that is specifically designed to use information provided by contact tracing. Experiments using a variety of reproduction numbers and dispersion levels, including those estimated in the context of the COVID-19 pandemic, show that the pools found using our method result in a significantly lower number of tests than those found using Dorfman's method. Our method provides the greatest competitive advantage when the number of contacts of an infected individual is small, or the distribution of secondary infections is highly overdispersed. Moreover, it maintains this competitive advantage under imperfect contact tracing and significant levels of dilution.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Contact Tracing , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...