Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Biol Ther ; 6(4): 494-503, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17374985

ABSTRACT

High-selenium containing yeast is being evaluated in clinical trials against colon polyp recurrence. However, the molecular targets for the anticancer effects of selenium remain unclear. Previous studies by our group demonstrated that selenomethionine-induced growth arrest appears to be mediated by activation of ERK and subsequent phosphorylation of RSK and histone H3. These results suggest that selenomethionine can alter gene expression. In the present study, we have used cDNA microarrays to determine whether gene expression differences exist in HCT116 colon cancer cells treated with selenomethionine. These experiments reveal statistically significant expression changes for 50 genes. Genes we found to increase with selenomethionine treatment include KLK6, ATOX1, SGK, GJB2, DAP-1, PLAU, VIM, DPYSL2, STC2 and PXN. Conversely, genes downregulated by selenomethionine include PRKACB, LIM, DEPP, MYC, CDH5, ELF3, VSNL1, SAT and EGLN3. Further analysis of those genes using chromatin immunoprecipitation experiments showed that phosphorylated histone H3 on serine 10 bound to the GJB2 promoter (connexin 26) or the serum glucocorticoid kinase promoter is increased with selenomethionine treatment. Cells overexpressing CX26 or DAP-1 displayed a reduced number of colonies which suggests that these two genes could play a functional role in the growth inhibitory effects of selenomethionine. These data support the notion that selenomethionine-induced growth inhibition is associated with global changes in gene expression. They also demonstrate that selenomethionine can modify chromatin state to alter gene transcription. Finally, our studies provide a practical foundation for the further development of biomarkers to monitor the efficacy of selenomethionine in clinical trials.


Subject(s)
Colonic Neoplasms/genetics , Gene Expression Profiling , Gene Expression/drug effects , Genes, Neoplasm , Selenomethionine/pharmacology , Cell Line, Tumor , Chromatin/drug effects , Connexin 26 , Connexins/genetics , Histones/drug effects , Humans , Immediate-Early Proteins/genetics , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/drug effects , Protein Serine-Threonine Kinases/genetics
2.
Cancer Lett ; 222(1): 119-24, 2005 May 10.
Article in English | MEDLINE | ID: mdl-15837549

ABSTRACT

Human mammary carcinoma MCF-7 cell line responsiveness to the pteridines xanthopterin and isoxanthopterin was studied using the MTS assay for measurement of cell viability. The pteridines were tested at concentrations ranging from 7.8 to 500 microM singly and in 11 isoxanthopterin:xanthopterin ratios. IC50s of xanthopterin and isoxanthopterin were 109+/-13 microM (mean+/-SEM of y estimate) and 103+/-9 microM, respectively. The IC50 values for pteridine mixtures were similar although 3:1 and 4:1 isoxanthopterin:xanthopterin ratios seemed slightly more cytotoxic than other mixtures. However, ANOVA revealed no statistical differences in the cytotoxicity of mixtures.


Subject(s)
Cell Survival/drug effects , Xanthopterin/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms , Cell Line, Tumor , Drug Combinations , Drug Synergism , Humans , Inhibitory Concentration 50 , Xanthopterin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...