Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8103, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582880

ABSTRACT

Antimicrobial resistance genes (ARG), such as extended-spectrum ß-lactamase (ESBL) and carbapenemase genes, are commonly carried on plasmids. Plasmids can transmit between bacteria, disseminate globally, and cause clinically important resistance. Therefore, targeting plasmids could reduce ARG prevalence, and restore the efficacy of existing antibiotics. Cobalt complexes possess diverse biological activities, including antimicrobial and anticancer properties. However, their effect on plasmid conjugation has not been explored yet. Here, we assessed the effect of four previously characterised bis(N-picolinamido)cobalt(II) complexes lacking antibacterial activity on plasmid conjugation in Escherichia coli and Klebsiella pneumoniae. Antimicrobial susceptibility testing of these cobalt complexes confirmed the lack of antibacterial activity in E. coli and K. pneumoniae. Liquid broth and solid agar conjugation assays were used to screen the activity of the complexes on four archetypical plasmids in E. coli J53. The cobalt complexes significantly reduced the conjugation of RP4, R6K, and R388 plasmids, but not pKM101, on solid agar in E. coli J53. Owing to their promising activity, the impact of cobalt complexes was tested on the conjugation of fluorescently tagged extended-spectrum ß-lactamase encoding pCTgfp plasmid in E. coli and carbapenemase encoding pKpQILgfp plasmid in K. pneumoniae, using flow cytometry. The complexes significantly reduced the conjugation of pKpQILgfp in K. pneumoniae but had no impact on pCTgfp conjugation in E. coli. The cobalt complexes did not have plasmid-curing activity, suggesting that they target conjugation rather than plasmid stability. To our knowledge, this is the first study to report reduced conjugation of clinically relevant plasmids with cobalt complexes. These cobalt complexes are not cytotoxic towards mammalian cells and are not antibacterial, therefore they could be optimised and employed as inhibitors of plasmid conjugation.


Subject(s)
Anti-Infective Agents , Klebsiella Infections , Animals , Agar , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , beta-Lactamases/genetics , Escherichia coli/genetics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Mammals/genetics , Microbial Sensitivity Tests , Plasmids/genetics
2.
Organometallics ; 42(15): 1869-1881, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37592952

ABSTRACT

The synthesis and characterization of 24 ruthenium(II) arene complexes of the type [(p-cym)RuCl(Fc-acac)] (where p-cym = p-cymene and Fc-acac = functionalized ferrocenyl ß-diketonate ligands) are reported, including single-crystal X-ray diffraction for 21 new complexes. Chemosensitivity studies have been conducted against human pancreatic carcinoma (MIA PaCa-2), human colorectal adenocarcinoma p53-wildtype (HCT116 p53+/+) and normal human retinal epithelial cell lines (APRE-19). The most active complex, which contains a 2-furan-substituted ligand (4), is 5x more cytotoxic than the analogs 3-furan complex (5) against MIA PaCa-2. Several complexes were screened under hypoxic conditions and at shorter-time incubations, and their ability to damage DNA was determined by the comet assay. Compounds were also screened for their potential to inhibit the growth of both bacterial and fungal strains.

3.
Org Biomol Chem ; 21(12): 2539-2544, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36877005

ABSTRACT

Copper Pyrithione, [Cu(PyS)2] has shown excellent biological activity against cancer cells and bacterial cells, however, it has extremely low aqueous solubility, limiting its applicability. Herein, we report a series of PEG-substituted pyrithione copper(II) complexes with significantly increased aqueous solubility. While long PEG chains lead to a decrease in bioactivity, the addition of short PEG chains leads to improved aqueous solubility with retention of activity. One novel complex, [Cu(PyS1)2], has particularly impressive anticancer activity, surpassing that of the parent complex.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Organometallic Compounds , Water , Organometallic Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Copper/pharmacology , Coordination Complexes/pharmacology , Solubility
4.
Front Chem ; 9: 709161, 2021.
Article in English | MEDLINE | ID: mdl-34277574

ABSTRACT

The synthesis and characterization of three aromatic oligoamides, constructed from the same pyridyl carboxamide core but incorporating distinct end groups of acetyl (Ac) 1, tert-butyloxycarbonyl (Boc) 2 and amine 3 is reported. Single crystal X-ray diffraction analysis of 1-3 and a dimethylsulfoxide (DMSO) solvate of 2 (2-DMSO), has identified the presence of a range of intra- and intermolecular interactions including N-H⋯N, N-H⋯O=C and N-H⋯O=S(CH3)2 hydrogen-bonding interactions, C-H⋯π interactions and off-set, face-to-face stacking π-π interactions that support the variety of slipped stack, herringbone and cofacial crystal packing arrangements observed in 1-3. Additionally, the cytotoxicity of this series of aromatic oligoamides was assessed against two human ovarian (A2780 and A2780cisR), two human breast (MCF-7 and MDA-MB-231) cancerous cell lines and one non-malignant human epithelial cell line (PNT-2), to investigate the influence of the terminal functionality of these aromatic oligoamides on their biological activity. The chemosensitivity results highlight that modification of the terminal group from Ac to Boc in 1 and 2 leads to a 3-fold increase in antiproliferative activity against the cisplatin-sensitive ovarian carcinoma cell line, A2780. The presence of the amine termini in 3 gave the only member of the series to display activity against the cisplatin-resistance ovarian carcinoma cell line, A2780cisR. Compound 2 is the lead candidate of this series, displaying high selectivity towards A2780 cancer cells when compared to non-malignant PNT-2 cells, with a selectivity index value >4.2. Importantly, this compound is more selective towards A2780 (cf. PNT-2) than the clinical platinum drugs oxaliplatin by > 2.6-fold and carboplatin by > 1.6-fold.

5.
ChemMedChem ; 16(20): 3210-3221, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34327861

ABSTRACT

This report highlights the synthesis and characterization of ten new bis(N-picolinamido)cobalt(II) complexes of the type [(L)2 CoX2 ]0/2+ , whereby L=N-picolinamide ligand and X=diisothiocyanato (-NCS), dichlorido (-Cl) or diaqua (-OH2 ) ligands. Single crystal X-ray (SC-XRD) analysis for nine of the structures are reported and confirm the picolinamide ligand is bound to the Co(II) center through a neutral N,O binding mode. With the addition of powder X-ray diffraction (PXRD), we have confirmed the cis and trans ligand arrangements of each complex. All complexes were screened against several fungal species and show increased antifungal activity. Notably, these complexes had significant activity against strains of Candida albicans and Aspergillus fumigatus, with several compounds exhibiting growth inhibition of >80 %, and onecompound inhibiting Aspergillus fumigatus hyphal growth by >90 %. Conversely, no antifungal activity was exhibited toward Cryptococcus neoformans and no cytotoxicity towards mammalian cell lines.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Candida albicans/drug effects , Cobalt/pharmacology , Coordination Complexes/pharmacology , Picolinic Acids/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Cobalt/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Picolinic Acids/chemistry , Structure-Activity Relationship
6.
ChemMedChem ; 16(15): 2402-2410, 2021 08 05.
Article in English | MEDLINE | ID: mdl-33856120

ABSTRACT

To understand the potential in vitro modes of action of bis(ß-diketonato) oxovanadium(IV) complexes, nine compounds of varying functionality have been screened using a range of biological techniques. The antiproliferative activity against a range of cancerous and normal cell lines has been determined, and show these complexes are particularly sensitive against the lung carcinoma cell line, A549. Annexin V (apoptosis) and Caspase-3/7 assays were studied to confirm these complexes induce programmed cell death. While gel electrophoresis was used to determine DNA cleavage activity and production of reactive oxygen species (ROS), the Comet assay was used to determine induced genomic DNA damage. Additionally, Förster resonance energy transfer (FRET)-based DNA melting and fluorescent intercalation displacement assays have been used to determine the interaction of the complexes with double strand (DS) DNA and to establish preferential DNA base-pair binding (AT versus GC).


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Ketones/pharmacology , Vanadium/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ketones/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured , Vanadium/chemistry
7.
Inorg Chem ; 60(3): 2076-2086, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33463147

ABSTRACT

This work presents the synthesis of eight new rhodium(III) dihalido complexes, [RhX2(L)(LH)] (where X = Cl or I), which incorporate two bidentate N-(3-halidophenyl)picolinamide ligands. The ligands have different binding modes in the complexes, whereby one is neutral and bound via N,N (LH) coordination, while the other is anionic and bound via N,O (L) coordination. The solid state and solution studies confirm multiple isomers are present when X = Cl; however, after a halide exchange with potassium iodide (X = I) the complexes exist exclusively as single stable trans isomers. NMR studies reveal the Rh(III) trans diiodido complexes remain stable in aqueous solution with no ligand exchange reported over 96 h. Chemosensitivity data against a range of cancer cell lines show two cytotoxic complexes, where L = N-(3-bromophenyl)picolinamide ligand. The results have been compared to the analogous Ru(III) complexes and overall highlight the Rh(III) trans diiodido complex to be ∼78× more cytotoxic than the analogous Rh(III) dichlorido complex, unlike the Ru(III) complexes which are equitoxic against all cell lines. Additionally, the Rh(III) trans diiodido complex is more selective toward cancerous cells, with selectivity index (SI) values >25-fold higher than cisplatin against colorectal carcinoma.


Subject(s)
Antineoplastic Agents/pharmacology , Chlorides/pharmacology , Coordination Complexes/pharmacology , Iodine/pharmacology , Ruthenium/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorides/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Iodine/chemistry , Ligands , Models, Molecular , Molecular Structure , Ruthenium/chemistry , Structure-Activity Relationship
8.
Chemistry ; 27(11): 3737-3744, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33073884

ABSTRACT

The synthesis and characterization of new bis(bipyridine)ruthenium(II) ferrocenyl ß-diketonate complexes, [(bpy)2 Ru(Fc-acac)][PF6 ] (bpy=2,2'-bipyridine; Fc-acac=functionalized ferrocenyl ß-diketonate ligand) are reported. Alongside clinical platinum drugs, these bimetallic ruthenium-iron complexes have been screened for their cytotoxicity against MIA PaCa-2 (human pancreatic carcinoma), HCT116 p53+/+ (human colon carcinoma, p53-wild type) and ARPE-19 (human retinal pigment epithelial) cell lines. With the exception of one complex, the library exhibit nanomolar potency against cancerous cell lines, and their relative potencies are up to 40x, 400x and 72x more cytotoxic than cisplatin, carboplatin and oxaliplatin, respectively. Under hypoxic conditions, the complexes remain cytotoxic (sub-micromolar range), highlighting their potential in targeting hypoxic tumor regions. The Comet assay was used to determine their ability to damage DNA, and results show dose dependent damage which correlates well with the cytotoxicity results. Their potential to treat bacterial and fungal strains has been determined, and highlight complexes have selective growth inhibition of up to 87-100 % against Staphylococcus aureus and Candida albicans.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Ruthenium/chemistry , Cell Line, Tumor , Comet Assay , Humans , Microbial Sensitivity Tests , Ruthenium/pharmacology
9.
Chemistry ; 26(65): 14938-14946, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32520417

ABSTRACT

A series of cyclometallated mono- and di-nuclear platinum(II) complexes and the parent organic ligand, 2,6-diphenylpyridine 1 (HC^N^CH), have been synthesized and characterized. This library of compounds includes [(C^N^C)PtII (L)] (L=dimethylsulfoxide (DMSO) 2 and triphenylphosphine (PPh3 ) 3) and [((C^N^C)PtII )2 (L')] (where L'=N-heterocycles (pyrazine (pyr) 4, 4,4'-bipyridine (4,4'-bipy) 5 or diphosphine (1,4-bis(diphenylphosphino)butane (dppb) 6). Their cytotoxicity was assessed against four cancerous cell lines and one normal cell line, with results highlighting significantly increased antiproliferative activity for the dinuclear complexes (4-6), when compared to the mononucleated species (2 and 3). Complex 6 is the most promising candidate, displaying very high selectivity towards cancerous cells, with selectivity index (SI) values >29.5 (A2780) and >11.2 (A2780cisR), and outperforming cisplatin by >4-fold and >18-fold, respectively.


Subject(s)
Platinum Compounds/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Ligands , Ovarian Neoplasms , Platinum
10.
Chembiochem ; 21(14): 1988-1996, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32176811

ABSTRACT

Herein we present a library of fully characterized ß-diketonate and ß-ketoiminate compounds that are functionalized with a ferrocenyl moiety. Their cytotoxic potential has been determined by screening against human breast adenocarcinomas (MCF-7 and MDA-MB-231), human colorectal carcinoma p53 wild type (HCT116 p53+/+ ) and normal human prostate (PNT2) cell lines. The ferrocenyl ß-diketonate compounds are more than 18 times more cytotoxic than the ferrocenyl ß-ketoiminate analogues. Against MCF-7, compounds functionalized at the meta position are up to nine times more cytotoxic than when functionalized at the para position. The ferrocenyl ß-diketonate compounds have increased selectivity towards MCF-7 and MDA-MB-231, with several complexes having selectivity index (SI) values that are more than nine times (MCF-7) and more than six times (MDA-MB-231) that of carboplatin. The stability of these compounds in dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) has been assessed by NMR spectroscopy and mass spectrometry studies, and the compounds show no oxidation of the iron center from FeII to FeIII . Cytotoxicity screening was performed in both DMSO and DMF, with no significant differences observedin their potency.


Subject(s)
Antineoplastic Agents/pharmacology , Ferrous Compounds/pharmacology , Imines/pharmacology , Ketones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ferrous Compounds/chemistry , Humans , Imines/chemistry , Ketones/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship
11.
Dalton Trans ; 49(5): 1700, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31967138

ABSTRACT

Correction for 'Pseudo electron-deficient organometallics: limited reactivity towards electron-donating ligands' by Anaïs Pitto-Barry et al., Dalton Trans., 2017, 46, 15676-15683.

12.
ChemMedChem ; 14(22): 1887-1893, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31545555

ABSTRACT

An evaluation of the in vitro cytotoxicity of nine electron-deficient half-sandwich metal complexes towards two colorectal cancer cell lines (HCT116 p53+/+, HCT116 p53-/-) and one normal prostate cell line (PNT2) is presented herein. Three complexes were found to be equally cytotoxic towards both colorectal cancer cell lines, suggesting a p53-independent mechanism of action. These complexes are 12 to 34× more potent than cisplatin against HCT116 p53+/+ and HCT116 p53-/- cells. Furthermore, they were found to exhibit little or no cytotoxicity towards PNT2 normal cells, with selectivity ratios greater than 50. To gain an insight into the potential mechanisms of action of the most active compounds, their effects on the expression levels of a panel of genes were measured using qRT-PCR against treated HCT116 p53+/+ and HCT116 p53-/- cells, and cell-cycle analysis was carried out.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Coordination Complexes/pharmacology , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Coordination Complexes/chemistry , Electrons , HCT116 Cells , Humans , Molecular Structure , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/metabolism
13.
Chemistry ; 25(53): 12275-12280, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31389071

ABSTRACT

A range of oxobis(phenyl-1,3-butanedione) vanadium(IV) complexes have been successfully synthesized from cheap starting materials and a simple and solvent-free one-pot dry-melt reaction. This direct, straightforward, fast and alternative approach to inorganic synthesis has the potential for a wide range of applications. Analytical studies confirm their successful synthesis, purity and solid-state coordination, and we report the use of such complexes as potential drug candidates for the treatment of cancer. After a 24 hour incubation of A549 lung carcinoma cells with the compounds, they reveal cytotoxicity values elevenfold greater than cisplatin and remain non-toxic towards normal cell types. Additionally, the complexes are stable over a range of physiological pH values and show the potential for interactions with bovine serum albumin.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/toxicity , Coordination Complexes/chemical synthesis , Vanadium/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cattle , Cisplatin/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Solvents
14.
Chem Sci ; 10(42): 9740-9751, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-32055343

ABSTRACT

The uranyl(vi) 'Pacman' complex [(UO2)(py)(H2L)] A (L = polypyrrolic Schiff-base macrocycle) is reduced by Cp2Ti(η2-Me3SiC[triple bond, length as m-dash]CSiMe3) and [Cp2TiCl]2 to oxo-titanated uranyl(v) complexes [(py)(Cp2TiIIIOUO)(py)(H2L)] 1 and [(ClCp2TiIVOUO)(py)(H2L)] 2. Combination of ZrII and ZrIV synthons with A yields the first ZrIV-uranyl(v) complex, [(ClCp2ZrOUO)(py)(H2L)] 3. Similarly, combinations of Ae0 and AeII synthons (Ae = alkaline earth) afford the mono-oxo metalated uranyl(v) complexes [(py)2(ClMgOUO)(py)(H2L)] 4, [(py)2(thf)2(ICaOUO)(py) (H2L)] 5; the zinc complexes [(py)2(XZnOUO)(py)(H2L)] (X = Cl 6, I 7) are formed in a similar manner. In contrast, the direct reactions of Rb or Cs metal with A generate the first mono-rubidiated and mono-caesiated uranyl(v) complexes; monomeric [(py)3(RbOUO)(py)(H2L)] 8 and hexameric [(MOUO)(py)(H2L)]6 (M = Rb 8b or Cs 9). In these uranyl(v) complexes, the pyrrole N-H atoms show strengthened hydrogen-bonding interactions with the endo-oxos, classified computationally as moderate-strength hydrogen bonds. Computational DFT MO (density functional theory molecular orbital) and EDA (energy decomposition analysis), uranium M4 edge HR-XANES (High Energy Resolution X-ray Absorption Near Edge Structure) and 3d4f RIXS (Resonant Inelastic X-ray Scattering) have been used (the latter two for the first time for uranyl(v) in 7 (ZnI)) to compare the covalent character in the UV-O and O-M bonds and show the 5f orbitals in uranyl(vi) complex A are unexpectedly more delocalised than in the uranyl(v) 7 (ZnI) complex. The Oexo-Zn bonds have a larger covalent contribution compared to the Mg-Oexo/Ca-Oexo bonds, and more covalency is found in the U-Oexo bond in 7 (ZnI), in agreement with the calculations.

15.
Chemistry ; 25(2): 495-500, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30362193

ABSTRACT

This report presents a new library of organometallic iridium(III) compounds of the type [Cp*IrCl(L)] (Cp*=pentamethylcyclopentadienyl and L=a functionalized ß-ketoiminato ligand) showing moderate to high cytotoxicity against a range of cancer cell lines. All compounds show increased activity towards colorectal cancer, with preferential activity observed against the immortalized p53-null colorectal cell line, HCT116 p53-/-, with sensitivity factors (SF) up to 26.7. Additionally, the compounds have excellent selectivity for cancerous cells when tested against normal cell types, with selectivity ratios (SR) up to 35.6, contrary to that of cisplatin, which is neither selective nor specific for cancerous cells (SF=0.43 and SR=0.7-2.3). This work provides a preliminary understanding of the cytotoxicity of iridium compounds in the absence of p53 and has potential applications in treatment of cancers for which the p53 gene is absent or mutant.


Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Imines/chemistry , Iridium/chemistry , Tumor Suppressor Protein p53/genetics , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , Crystallography, X-Ray , HCT116 Cells , Humans , Molecular Conformation , Thioredoxin Reductase 1/antagonists & inhibitors , Thioredoxin Reductase 1/metabolism , Tumor Suppressor Protein p53/deficiency
16.
Biomater Sci ; 6(8): 2101-2109, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29881840

ABSTRACT

Microbial keratitis can arise from penetrating injuries to the cornea. Corneal trauma promotes bacterial attachment and biofilm growth, which decrease the effectiveness of antimicrobials against microbial keratitis. Improved therapeutic efficacy can be achieved by reducing microbial burden prior to antimicrobial therapy. This paper assesses a highly-branched poly(N-isopropyl acrylamide) with vancomycin end groups (HB-PNIPAM-van), for reducing bacterial attachment and biofilm formation. The polymer lacked antimicrobial activity against Staphylococcus aureus, but significantly inhibited biofilm formation (p = 0.0008) on plastic. Furthermore, pre-incubation of S. aureus cells with HB-PNIPAM-van reduced cell attachment by 50% and application of HB-PNIPAM-van to infected ex vivo rabbit corneas caused a 1-log reduction in bacterial recovery, compared to controls (p = 0.002). In conclusion, HB-PNIPAM-van may be a useful adjunct to antimicrobial therapy in the treatment of corneal infections.


Subject(s)
Acrylic Resins/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cornea/drug effects , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Acrylic Resins/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Cornea/metabolism , Lasers , Microbial Sensitivity Tests , Particle Size , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Staphylococcal Infections/metabolism , Staphylococcus aureus/cytology , Staphylococcus aureus/metabolism , Surface Properties , Vancomycin/chemistry
17.
Dalton Trans ; 46(45): 15676-15683, 2017 11 21.
Article in English | MEDLINE | ID: mdl-28926052

ABSTRACT

Half-sandwich metal complexes are of considerable interest in medicinal, material, and nanomaterial chemistry. The design of libraries of such complexes with particular reactivity and properties is therefore a major quest. Here, we report the unique and peculiar reactivity of eight apparently 16-electron half-sandwich metal (ruthenium, osmium, rhodium, and iridium) complexes based on benzene-1,2-dithiolato and 3,6-dichlorobenzene-1,2-dithiolato chelating ligands. These electron-deficient complexes do not react with electron-donor pyridine derivatives, even with the strong σ-donor 4-dimethylaminopyridine (DMAP) ligand. The Ru, Rh, and Ir complexes accept electrons from the triphenylphosphine ligand (σ-donor, π-acceptor), whilst the Os complexes were found to be the first examples of non-electron-acceptor electron-deficient metal complexes. We rationalised these unique properties by a combination of experimental techniques and DFT/TDFT calculations. The synthetic versatility offered by this family of complexes, the low reactivity at the metal center, and the facile functionalisation of the non-innocent benzene ligands is expected to allow the synthesis of libraries of pseudo electron-deficient half-sandwich complexes with unusual properties for a broad range of applications.

18.
Chemistry ; 23(26): 6341-6356, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28225184

ABSTRACT

A library of new bis-picolinamide ruthenium(III) dihalide complexes of the type [RuX2 L2 ] (X=Cl or I, L=picolinamide) have been synthesised and characterised. The complexes exhibit different picolinamide ligand binding modes, whereby one ligand is bound (N,N) and the other bound (N,O). Structural studies revealed a mixture of cis and trans isomers for the [RuCl2 L2 ] complexes but upon a halide exchange reaction to yield [RuI2 L2 ], only single trans isomers were detected. High cytotoxic activity against human cancer cell lines was observed, with the potencies of some complexes similar to or better than cisplatin. The conversion to [RuI2 L2 ] substantially increased the activity towards cancer cell lines by more than twelvefold. The [RuI2 L2 ] complexes displayed potent activity against the A2780cis (cisplatin-resistant human ovarian cancer) cell line, with a more than fourfold higher potency than cisplatin. Equitoxic activity was observed against normoxic and hypoxic cancer cells, which indicates the potential to eradicate both the hypoxic and aerobic fractions of solid tumours with similar efficiency. The activity of selected complexes against non-cancer ARPE-19 cells was also tested. The [RuI2 L2 ] complexes were found to be more potent than the [RuCl2 L2 ] analogues and also more selective towards cancer cells with a selectivity factor in excess of sevenfold.


Subject(s)
Antineoplastic Agents/chemistry , Chlorides/chemistry , Coordination Complexes/chemistry , Iodides/chemistry , Ruthenium/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/toxicity , Cell Hypoxia , Cell Line , Cell Survival/drug effects , Cisplatin/toxicity , Coordination Complexes/chemical synthesis , Coordination Complexes/toxicity , Crystallography, X-Ray , Drug Resistance, Neoplasm/drug effects , Humans , Isomerism , Ligands , Molecular Conformation
19.
Chem Sci ; 8(5): 3609-3617, 2017 May 01.
Article in English | MEDLINE | ID: mdl-30155206

ABSTRACT

The first use of a dinuclear UIII/UIII complex in the activation of small molecules is reported. The octadentate Schiff-base pyrrole, anthracene-hinged 'Pacman' ligand LA combines two strongly reducing UIII centres and three borohydride ligands in [M(THF)4][{U(BH4)}2(µ-BH4)(LA)(THF)2] 1-M, (M = Li, Na, K). The two borohydride ligands bound to uranium outside the macrocyclic cleft are readily substituted by aryloxide ligands, resulting in a single, weakly-bound, encapsulated endo group 1 metal borohydride bridging the two UIII centres in [{U(OAr)}2(µ-MBH4)(LA)(THF)2] 2-M (OAr = OC6H2t Bu3-2,4,6, M = Na, K). X-ray crystallographic analysis shows that, for 2-K, in addition to the endo-BH4 ligand the potassium counter-cation is also incorporated into the cleft through η5-interactions with the pyrrolides instead of extraneous donor solvent. As such, 2-K has a significantly higher solubility in non-polar solvents and a wider U-U separation compared to the 'ate' complex 1. The cooperative reducing capability of the two UIII centres now enforced by the large and relatively flexible macrocycle is compared for the two complexes, recognising that the borohydrides can provide additional reducing capability, and that the aryloxide-capped 2-K is constrained to reactions within the cleft. The reaction between 1-Na and S8 affords an insoluble, presumably polymeric paramagnetic complex with bridging uranium sulfides, while that with CS2 results in oxidation of each UIII to the notably high UV oxidation state, forming the unusual trithiocarbonate (CS3)2- as a ligand in [{U(CS3)}2(µ-κ2:κ2-CS3)(LA)] (4). The reaction between 2-K and S8 results in quantitative substitution of the endo-KBH4 by a bridging persulfido (S2)2- group and oxidation of each UIII to UIV, yielding [{U(OAr)}2(µ-κ2:κ2-S2)(LA)] (5). The reaction of 2-K with CS2 affords a thermally unstable adduct which is tentatively assigned as containing a carbon disulfido (CS2)2- ligand bridging the two U centres (6a), but only the mono-bridged sulfido (S)2- complex [{U(OAr)}2(µ-S)(LA)] (6) is isolated. The persulfido complex (5) can also be synthesised from the mono-bridged sulfido complex (6) by the addition of another equivalent of sulfur.

20.
Dalton Trans ; 45(33): 13196-203, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27417660

ABSTRACT

This report presents the first known p-cymene ruthenium quinaldamide complexes which are stabilised by a hydrogen-bridging atom, [{(p-cym)Ru(II)X(N,N)}{H(+)}{(N,N)XRu(II)(p-cym)}][PF6] (N,N = functionalised quinaldamide and X = Cl or Br). These complexes are formed by a reaction of [p-cymRu(µ-X)2]2 with a functionalised quinaldamide ligand. When filtered over NH4PF6, and under aerobic conditions the equilibrium of NH4PF6 ⇔ NH3 + HPF6 enables incorporation of HPF6 and the stabilisation of two monomeric ruthenium complexes by a bridging H(+), which are counter-balanced by a PF6 counterion. X-ray crystallographic analysis is presented for six new structures with OO distances of 2.420(4)-2.448(15) Å, which is significant for strong hydrogen bonds. Chemosensitivity studies against HCT116, A2780 and cisplatin-resistant A2780cis human cancer cells showed the ruthenium complexes with a bromide ancillary ligand to be more potent than those with a chloride ligand. The 4'-fluoro compounds show a reduction in potency for both chloride and bromide complexes against all cell lines, but an increase in selectivity towards cancer cells compared to non-cancer ARPE-19 cells, with a selectivity index >1. Mechanistic studies showed a clear correlation between IC50 values and induction of cell death by apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Monoterpenes/pharmacology , Ruthenium/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line , Cell Line, Tumor , Coordination Complexes/chemistry , Cymenes , Humans , Hydrogen/chemistry , Monoterpenes/chemistry , Ruthenium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...