Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(55): 7033-7036, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38896088

ABSTRACT

Herein we describe the stoichiometric and catalytic carbene-transfer reactivity of iron(II) alkoxide complexes with iodonium ylide precursors. Treatment of PhIC(CO2Me)2 with styrene in the presence of catalytic amounts of several different Fe(OR)2(THF)2 precursors results in efficient cyclopropanation for a variety of styrenes. Computational and reactivity studies suggest a novel remote metallocarbene/vinyl radical intermediate, Fe(OR)2(κ2-(OC(OMe))2C), which could be responsible for the reactive nature of the catalyst.

2.
Inorg Chem ; 62(37): 15063-15075, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37677846

ABSTRACT

A functional model of Mo-Cu carbon monoxide dehydrogenase (CODH) enzyme requires the presence of an oxidant (metal-oxo) and a metal-bound carbonyl in close proximity. In this work, we report the synthesis, characterization, and reactivity of a heterobimetallic complex combining Mo(VI) trioxo with Mo(0) tricarbonyl. The formation of the heterobimetallic complex is facilitated by the xanthene-bridged heterodinucleating ligand containing a hard catecholate chelate and a soft iminopyridine chelate. A catechol-coordinated square-pyramidal [MoVIO3] fragment interacts directly with the iminopyridine-bound [Mo0(CO)3] fragment via a single (oxo) bridge, with the overall disposition being related to the proposed first step in the CODH mechanism, where square-pyramidal [MoVIO2S] interacts with the [Cu-CO] via a single sulfido bridge. Our attempt to obtain a sulfido-bridged analogue (using [MoO3S]2- precursor) led to a mixture of products possibly containing different (oxo and sulfido) bridges. Despite a direct interaction between Mo(VI) and Mo(0) segments, no internal redox is observed, with the high lying occupied MOs being mostly d-π orbitals at Mo0(CO)3 and the low lying unoccupied MOs being d-π orbitals at MoVIO3. Due to the overall rigid structure, the heterobimetallic complex was found to be stable up to 100 °C in DMF-d7 (based on 1H NMR). The decomposition of the complex above this temperature does not produce CO2 (based on gas chromatography), dissociating stable Mo(CO)3(DMF)3 instead (based on IR). We also synthesized and studied the reactivity of the Mo(VI)/Cr(0) analogue. While this complex demonstrated more facile decomposition, no CO2 production was observed. Density functional theory calculations suggest that the formation of [CO2]2- and its subsequent reductive elimination is endergonic in the present system, likely due to the stability of fac-Mo0(CO)3 and the relative nucleophilic character of the carbonyl carbon engendered by back donation from Mo(0). The calculations also indicate that the replacement of one oxo by sulfido (both terminal and bridging), replacement of catechol with dithiolene, and replacement of Mo(0) with Cr(0) does not affect significantly the energetics of the process, likely requiring the use a less stable and less π-basic CO anchor.

3.
J Org Chem ; 88(17): 12319-12328, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37603582

ABSTRACT

Direct C-H bond arylation is a highly effective method for synthesizing arylated heteroaromatics. This method reduces the number of synthetic steps and minimizes the formation of impurities. We report an air- and moisture-stable iminopyridine-based α-diimine nickel(II) complex for direct C5-H bond arylation of thiazole derivatives. Under a low catalyst loading and performing the reactions at lower temperatures (80 °C) under aerobic conditions, we produced mono- and diarylated thiazole units. Competition experiments and density functional theory calculations revealed that the mechanism of C-H activation in 4-methylthiazole involves an electrophilic aromatic substitution.

4.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144492

ABSTRACT

Treatment of Mn(N(SiMe3)2)2(THF)2 with bulky chelating bis(alkoxide) ligand [1,1':4',1''-terphenyl]-2,2''-diylbis(diphenylmethanol) (H2[O-terphenyl-O]Ph) formed a seesaw manganese(II) complex Mn[O-terphenyl-O]Ph(THF)2, characterized by structural, spectroscopic, magnetic, and analytical methods. The reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various nitrene precursors was investigated. No reaction was observed between Mn[O-terphenyl-O]Ph(THF)2 and aryl azides. In contrast, the treatment of Mn[O-terphenyl-O]Ph(THF)2 with iminoiodinane PhINTs (Ts = p-toluenesulfonyl) was consistent with the formation of a metal-nitrene complex. In the presence of styrene, the reaction led to the formation of aziridine. Combining varying ratios of styrene and PhINTs in different solvents with 10 mol% of Mn[O-terphenyl-O]Ph(THF)2 at room temperature produced 2-phenylaziridine in up to a 79% yield. Exploration of the reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various olefins revealed (1) moderate aziridination yields for p-substituted styrenes, irrespective of the electronic nature of the substituent; (2) moderate yield for 1,1'-disubstituted α-methylstyrene; (3) no aziridination for aliphatic α-olefins; (4) complex product mixtures for the ß-substituted styrenes. DFT calculations suggest that iminoiodinane is oxidatively added upon binding to Mn, and the resulting formal imido intermediate has a high-spin Mn(III) center antiferromagnetically coupled to an imidyl radical. This imidyl radical reacts with styrene to form a sextet intermediate that readily reductively eliminates the formation of a sextet Mn(II) aziridine complex.

5.
J Inorg Biochem ; 230: 111744, 2022 05.
Article in English | MEDLINE | ID: mdl-35151097

ABSTRACT

Molybdenum in redox non-innocent ligand environments features prominently in biological inorganic systems. While Holm and coworkers, along with many other researchers, have thoroughly investigated formally high-oxidation-state molybdenum (Mo(IV)-Mo(VI)) ligated by dithiolenes, less is known about molybdenum in other formal oxidation states and/or different redox-active ligand environments. This work focuses on the investigation of low-valent molybdenum in four different redox non-innocent nitrogen ligand type environments (mononucleating and dinucleating iminopyridine, mononucleating and dinucleating bis(imino)pyridine). The reaction of iminopyridine N-(2,6-diisopropylphenyl)-1-(pyridin-2-yl)methanimine (L1) with Mo(CO)3(NCMe)3 produced Mo(L1)(CO)3(NCMe). Mo(L1)(CO)3(NCMe) undergoes transformation to Mo(L1)(CO)4 upon treatment with CS2 or prolonged stirring in dichloromethane. The reaction of the open-chain dinucleating bis(iminopyridine) ligand N,N'-(2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene-4,5-diyl)bis(1-(pyridin-2-yl)methanimine) (L2) similarly produced an hexacarbonyl complex Mo2(L2)(CO)6(NCMe)2 which also underwent transformation to the octacarbonyl Mo2(L2)(CO)8. Both complexes featured anti-parallel geometry of the chelating units. The oxidation of Mo(L1)(CO)3(NCMe) with I2 resulted in Mo(L1)(CO)3I2. The reaction of mononucleating potentially tridentate bis(imino)pyridine ligand (L3) (N-mesityl-1-(6-((E)-(mesitylimino)methyl)pyridin-2-yl)methanimine) with both Mo(CO)3(NCMe)3 and Mo(CO)4(NCMe)2 produced complexes Mo(L3)(CO)3(NCMe) and Mo(L3)(CO)4 in which L3 was coordinated in a bidentate fashion, with one imino sidearm unbound. The reaction of dinucleating macrocyclic di(bis(imino)pyridine) analogue (L4) led to the similar chemistry of Mo2(L4)(CO)6(NCMe)2 and Mo2(L4)(CO)8 complexes. Treatment of Mo(L3)(CO)3(NCMe) with I2 formed a mono(carbonyl) complex Mo(L3)(CO)I2 in which molybdenum was formally oxidized and L3 underwent coordination mode change to tridentate. The electronic structures of formally Mo(0) complexes in iminopyridine and bis(imino)pyridine ligand environments were investigated by density functional theory calculations.


Subject(s)
Molybdenum , Pyridines , Crystallography, X-Ray , Electronics , Ligands , Molybdenum/chemistry , Pyridines/chemistry
6.
Inorg Chem ; 60(19): 14655-14666, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34520185

ABSTRACT

In an effort to probe the feasibility of a model of Mo-Cu CODH (CODH = carbon monoxide dehydrogenase) lacking a bridging sulfido group, the new heterodinucleating ligand LH2 was designed and its Cu(I)/Mo(VI) reactivity was investigated. LH2 ((E)-3-(((5-(bis(pyridin-2-ylmethyl)amino)-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)imino)methyl)benzene-1,2-diol) features two different chelating positions bridged by a xanthene linker: bis(pyridyl)amine for Cu(I) and catecholate for Mo(VI). LH2 was synthesized via the initial protection of one of the amine positions, followed by two consecutive alkylations of the second position, deprotection, and condensation to attach the catechol functionality. LH2 was found to exhibit dynamic cooperativity between two reactive sites mediated by H-bonding of the catechol protons. In the free ligand, catechol protons exhibit H-bonding with imine (intramolecular) and with pyridine (intermolecular in the solid state). The reaction of LH2 with [Cu(NCMe)4]+ led to the tetradentate coordination of Cu(I) via all nitrogen donors of the ligand, including the imine. Cu(I) complexes were characterized by multinuclear NMR spectroscopy, high-resolution mass spectrometry (HRMS), X-ray crystallography, and DFT calculations. Cu(I) coordination to the imine disrupted H-bonding and caused rotation away from the catechol arm. The reaction of the Cu(I) complex [Cu(LH2)]+ with a variety of monodentate ligands X (PPh3, Cl-, SCN-, CN-) released the metal from coordination to the imine, thereby restoring imine H-bonding with the catechol proton. The second catechol proton engages in H-bonding with Cu-X (X = Cl, CN, SCN), which can be intermolecular (XRD) or intramolecular (DFT). The reaction of LH2 with molybdate [MoO4]2- led to incorporation of [MoVIO3] at the catecholate position, producing [MoO3(L)]2-. Similarly, the reaction of [Cu(LH2)]+ with [MoO4]2- formed the heterodinuclear complex [CuMoO3(L)]-. Both complexes were characterized by multinuclear NMR, UV-vis, and HRMS. HRMS in both cases confirmed the constitution of the complexes, containing molecular ions with the expected isotopic distribution.

7.
Chem Commun (Camb) ; 56(60): 8416-8419, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32579653

ABSTRACT

One electron reduction of formally CoIV(OR)2(CPh2) forms the [CoII(OR)2(CPh2)]- anion. Whereas low-spin Co(OR)2([double bond, length as m-dash]CPh2) demonstrated significant alkylidene character, the high-spin [Co(OR)2(CPh2)]- anion features a rare Co(ii)-carbene radical. Treatment of [Co(OR)2(CPh2)][CoCp*2] with xylyl isocyanide triggers formation of two new C-C bonds, and is likely mediated by nucleophilic attack of deprotonated CoCp*2+ on a transient ketenimine.

8.
Molecules ; 25(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936557

ABSTRACT

Synthesis of new chromium(II) complexes with chelating bis(alkoxide) ligand [OO]Ph (H2[OO]Ph = [1,1':4',1''-terphenyl]-2,2''-diylbis(diphenylmethanol)) and their subsequent reactivity in the context of catalytic production of carbodiimides from azides and isocyanides are described. Two different Cr(II) complexes are obtained, as a function of the crystallization solvent: mononuclear Cr[OO]Ph(THF)2 (in toluene/THF, THF = tetrahydrofuran) and dinuclear Cr2([OO]Ph)2 (in CH2Cl2/THF). The electronic structure and bonding in Cr[OO]Ph(THF)2 were probed by density functional theory calculations. Isolated Cr2([OO]Ph)2 undergoes facile reaction with 4-MeC6H4N3, 4-MeOC6H4N3, or 3,5-Me2C6H3N3 to yield diamagnetic Cr(VI) bis(imido) complexes; a structure of Cr[OO]Ph(N(4-MeC6H4))2 was confirmed by X-ray crystallography. The reaction of Cr2([OO]Ph)2 with bulkier azides N3R (MesN3, AdN3) forms paramagnetic products, formulated as Cr[OO]Ph(NR). The attempted formation of a Cr-alkylidene complex (using N2CPh2) instead forms chromium(VI) bis(diphenylmethylenehydrazido) complex Cr[OO]Ph(NNCPh2)2. Catalytic formation of carbodiimides was investigated for the azide/isocyanide mixtures containing various aryl azides and isocyanides. The formation of carbodiimides was found to depend on the nature of organoazide: whereas bulky mesitylazide led to the formation of carbodiimides with all isocyanides, no carbodiimide formation was observed for 3,5-dimethylphenylazide or 4-methylphenylazide. Treatment of Cr2([OO]Ph)2 or H2[OO]Ph with NO+ leads to the formation of [1,2-b]-dihydroindenofluorene, likely obtained via carbocation-mediated cyclization of the ligand.


Subject(s)
Chelating Agents/chemistry , Chromium/chemistry , Organometallic Compounds/chemistry , Alkanes/chemistry , Azides/chemistry , Catalysis , Chelating Agents/chemical synthesis , Crystallography, X-Ray , Ligands , Molecular Structure , Organometallic Compounds/chemical synthesis
9.
Inorg Chem ; 58(23): 15801-15811, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31714068

ABSTRACT

O2 activation at nonheme iron centers is a common motif in biological systems. While synthetic models have provided numerous insights into the reactivity of high-valent iron-oxo complexes related to biological processes, the majority of these complexes are synthesized using alternative oxidants. This report describes O2 activation by an iron(II)-triflate complex of the imino-functionalized tris(pyrrol-2-ylmethyl)amine ligand framework, H3[N(piCy)3]. Initial reaction conditions result in the formation of a mixture of oxidation products including terminal iron(III)-oxo and iron(III)-hydroxo complexes. The relevance of these species to the O2 activation process is demonstrated through reactivity studies and electrochemical analysis of the iron(III)-oxo complex.

10.
J Am Chem Soc ; 141(44): 17918-17925, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31651157

ABSTRACT

The mechanism of ring-opening metathesis polymerization (ROMP) for a set of functionalized norbornenyl monomers initiated by a Grubbs third generation precatalyst [(H2IMes)(pyr)2(Cl)2Ru═CHPh] was investigated. Through a series of 12C/13C and 1H/2H kinetic isotope effect studies, the rate-determining step for the polymerization was determined to be the formation of the metallacyclobutane ring. This experimental result was further validated through DFT calculations showing that the highest energy transition state is metallacyclobutane formation. The effect of monomer stereochemistry (exo vs endo) of two types of ester substituted monomers was also investigated. Kinetic and spectroscopic evidence supporting the formation of a six-membered chelate through coordination of the proximal polymer ester to the Ru center is presented. This chelation and its impact on the rate of polymerization are shown to vary based on the monomer employed and its stereochemistry. The combination of this knowledge led to the derivation of a generic rate law describing the rate of polymerization of norbornene monomers initiated by a Grubbs third generation catalyst.

11.
Chem Commun (Camb) ; 55(72): 10780-10783, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31432810

ABSTRACT

New chelating bis(alkoxide) ligand H2[OO]Ph and its iron(ii) complex Fe[OO]Ph(THF)2 are described. The coordination of the ligand to the metal center is reminiscent of the coordination of two monodentate alkoxides in previously reported Fe(OR)2(THF)2 species. Fe[OO]Ph(THF)2 catalyzes selective and efficient dimerization of non-bulky aryl nitrenes to yield the corresponding azoarenes.

12.
Chem Commun (Camb) ; 55(58): 8458-8461, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31263817

ABSTRACT

The first transition metal mediated reductive coupling of diazoesters through the terminal nitrogens is reported. The resulting tetrazene-bridged bis(diazenylacetate) serves as a novel dinucleating ligand to iron(III). DFT calculations suggest that the reductive coupling takes place via a κ2 intermediate, which induces significant radical character on the terminal nitrogen.

13.
Dalton Trans ; 47(43): 15353-15363, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30280749

ABSTRACT

This work focuses on the application of dicobalt octacarbonyl (Co2(CO)8) as a metal precursor in the chemistry of formally low-valent cobalt with redox-active bis(imino)pyridine [NNN] ligands. The reactions of both mononucleating mesityl-substituted bis(aldimino)pyridine (L1) and dinucleating macrocyclic xanthene-bridged di(bis(aldimino)pyridine) (L2) with Co2(CO)8 were investigated. Independent of the metal-to-ligand ratio (1 : 1 or 1 : 2 ligand to Co2(CO)8), the reaction of the dinucleating ligand L2 with Co2(CO)8 produces a tetranuclear complex [Co4(L2)(CO)10] featuring two discrete [Co2[NNN](CO)5] units. In contrast, a related mononucleating bis(aldimino)pyridine ligand, L1, produces different species at different ligand to Co2(CO)8 ratios, including dinuclear [Co2(CO)5(L1)] and zwitterionic [Co(L1)2][Co(CO)4]. Interestingly, [Co4(L2)(CO)10] features metal-metal bonds, and no bridging carbonyls, whereas [Co2(CO)5(L1)] contains cobalt centers bridged by one or two carbonyl ligands. In either case, treatment with excess acetonitrile leads to disproportionation to the zwitterionic [Co[NNN](NCMe)2][Co(CO)4] units. The electronic structures of the complexes described above were studied with density functional theory. All the obtained bis(imino)pyridine complexes serve as catalysts for cyclotrimerization of methyl propiolate, albeit their reactivity is inferior compared with Co2(CO)8.

14.
Inorg Chem ; 57(15): 9425-9438, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30015481

ABSTRACT

The reaction of HOR' (OR' = di-t-butyl-(3,5-diphenylphenyl)methoxide) with an iron(II) amide precursor forms the iron(II) bis(alkoxide) complex Fe(OR')2(THF)2 (2). 2 (5-10 mol %) serves as a catalyst for the conversion of aryl azides into the corresponding azoarenes. The highest yields are observed for aryl azides featuring two ortho substituents; other substitution patterns in the aryl azide precursor lead to moderate or low yields. The reaction of 2 with stoichiometric amounts (2 equiv) of the corresponding aryl azide shows the formation of azoarenes as the only organic products for the bulkier aryl azides (Ar = mesityl, 2,6-diethylphenyl). In contrast, formation of tetrazene complexes Fe(OR')2(ArNNNNAr) (3-6) is observed for the less bulky aryl azides (Ar = phenyl, 4-methylphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl). The electronic structure of selected tetrazene complexes was probed by spectroscopy (field-dependent 57Fe Mössbauer and high-frequency EPR) and density functional theory calculations. These studies revealed that Fe(OR')2(ArNNNNAr) complexes contain high-spin ( S = 5/2) iron(III) centers exchange-coupled to tetrazene radical anions. Tetrazene complexes Fe(OR')2(ArNNNNAr) produce the corresponding azoarenes (ArNNAr) upon heating. Treatment of a tetrazene complex Fe(OR')2(ArNNNNAr) with a different azide (N3Ar') produces all three possible products ArNNAr, ArNNAr', and Ar'NNAr'. These experiments and quantum mechanics/molecular mechanics calculations exploring the reaction mechanism suggest that the tetrazene functionality serves as a masked form of the reactive iron mono(imido) species.

15.
Inorg Chem ; 57(14): 8307-8316, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29969247

ABSTRACT

A series of four- and five-coordinate Ni(II) complexes Cz tBu(Pyr iPr)2NiX (1-3 and 1·THF-3·THF), where X = Cl, Br, and I, were synthesized and fully characterized by NMR and UV-vis spectroscopy, X-ray crystallography, cyclic voltammetry, and density functional theory calculations. The solid-state structures of 1-3 reveal rare examples of seesaw Ni(II) complexes. In solution, 1-3 bind reversibly to a THF molecule to form five-coordinate adducts. The electronic transitions in the visible region (630-680 nm), attributed to LMCT bands, for 1 → 3 exhibit a bathochromic shift. The thermochromic tendency of the five-coordinate complexes implies the loss of THF coordination at elevated temperatures. Finally, the electronic properties of all Ni(II) complexes were studied by time-dependent density functional theory calculations to characterize the nature of the excited states.

16.
Dalton Trans ; 47(30): 10017-10024, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-29946611

ABSTRACT

The synthesis of a heterodinucleating ligand LH2 (LH2 = (E)-3-(((2,7-di-tert-butyl-9,9-dimethyl-5-((pyridin-2-ylmethylene)amino)-9H-xanthen-4-yl)amino)methyl)benzene-1,2-diol) was undertaken toward a functional model of the bimetallic active site found in Mo-Cu carbon monoxide dehydrogenase (Mo-Cu CODH), and to understand the origins of heterobimetallic cooperativity exhibited by the enzyme. LH2 features a hard potentially dianionic catechol chelate for binding Mo(vi) and a soft iminopyridine chelate for binding Cu(i). Treatment of LH2 with either Cu(i) or M(vi) (M = Mo, W) sources leads to the anticipated site-selective incorporation of the respective metals. While both [CuI(LH2)]+ and [MVIO3(L)]2- complexes are stable in the solid state, [MVIO3(L)]2- complexes disproportionate in solution to give [MVIO2(L)2](NEt4)2 complexes, with [MVIO4]2- as the by-product. The incorporation of BOTH Mo(vi) and Cu(i) into L forms a highly reactive heterobimetallic complex [MoVIO3CuI(L)](NEt4)2, whose formation and reactivity was interrogated via1H NMR/UV-vis spectroscopy and DFT calculations. These studies reveal that the combination of the two metals triggers oxidation reactivity, in which a nucleophilic Mo(vi) trioxo attacks Cu(i)-bound imine. The major product of the reaction is a crystallographically characterized molybdenum(vi) complex [Mo(L')O2](NEt4) coordinated by a modified ligand L' that contains a new C-O bond in place of the imine functionality. This observed hydroxylation reactivity is consistent with the postulated first step of Mo-Cu CODH (nucleophilic attack of the Mo(vi)-oxo on the Cu(i)-bound electrophilic CO) and xanthine oxidoreductase (nucleophilic attack of Mo(vi)-oxo on the electrophilic xanthine carbon).

17.
Inorg Chem ; 56(16): 9505-9514, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28763211

ABSTRACT

The synthesis of bis(N1-phenyl-5-hydroxypyrazol-3-yl)pyridines ("L") is described, and these are silylated to achieve analogues ("Si2L") without the variable of the hydroxyl proton mobility. One hydroxyl example is characterized in its bis-pincer iron(II) complex, which shows every OH proton involved in hydrogen bonding. The steric bulk of the silylated N-phenyl-substituted ligands allows the synthesis and characterization of paramagnetic (Si2L)FeCl2 complexes, and one of these is reduced, under CO, to give the diamagnetic (Si2L)Fe(CO)2 species. Structural comparison and density functional theory calculations of the dichloride and dicarbonyl species show that much, but not all, of the reduction occurs at both the ligand pyridine and pyrazole rings, and thus this ligand type is more resistant to reduction than the simpler bis(iminopyridines). The OSiR3 substituent offers a useful diagnostic of reduction at pyrazole via the degree of π-donation to pyrazole by the oxygen lone pairs, and the stereoelectronic features of the NPh moiety are analyzed. The X-ray photoelectron spectroscopy binding energies of both iron and nitrogen are analyzed to show details of the locus of reduction.

18.
Inorg Chem ; 56(9): 4852-4863, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28394119

ABSTRACT

The derivatization of the imino-functionalized tris(pyrrolylmethyl)amine ligand framework, N(XpiR)3 (XLR; X = H, Br; R = cyclohexyl (Cy), phenyl (Ph), 2,6- diisopropylphenyl (DIPP)), is reported. Modular ligand synthesis allows for facile modification of both the primary and secondary coordination sphere electronics. The iron(II)-hydroxo complexes, N(XpiR)(XafaR)2Fe(II)OH (XLRFeIIOH), are synthesized to establish the impact of the ligand modifications on the complexes' electronic properties, including their chemical and electrochemical oxidation. Cyclic voltammetry demonstrates that the Fe(II/III) redox couple spans a 400 mV range across the series. The origin of the shifted potential is explained based on spectroscopic, structural, and theoretical analyses of the iron(II) and iron(III) compounds.

19.
Dalton Trans ; 46(17): 5605-5616, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28112311

ABSTRACT

The reaction of a dinucleating bis(iminopyridine) ligand L bearing a xanthene linker (L = N,N'-(2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene-4,5-diyl)bis(1-(pyridin-2-yl)methanimine)) with Ni2(COD)2(DPA) (COD = cyclooctadiene, DPA = diphenylacetylene) leads to the formation of a new dinuclear complex Ni2(L)(DPA). Ni2(L)(DPA) can also be obtained in a one-pot reaction involving Ni(COD)2, DPA and L. The X-ray structure of Ni2(L)(DPA) reveals two square-planar Ni centers bridged by a DPA ligand. DFT calculations suggest that this species features NiI centers antiferromagnetically coupled to each other and their iminopyridine ligand radicals. Treatment of Ni2(L)(DPA) with one equivalent of ethyl propiolate (HCCCO2Et) forms the Ni2(L)(HCCCO2Et) complex. Addition of the second equivalent of ethyl propiolate leads to the observation of cyclotrimerised products by 1H NMR spectroscopy. Carrying out the reaction under catalytic conditions (1 mol% of Ni2(L)(DPA), 24 h, room temperature) transforms 89% of the substrate, forming primarily benzene products (triethyl benzene-1,2,4-tricarboxylate and triethyl benzene-1,3,5-tricarboxylate) in 68% yield, in a ca. 5 : 1 relative ratio. Increasing catalyst loading to 5 mol% leads to the full conversion of ethyl propiolate to benzene products; no cyclotetramerisation products were observed. In contrast, the reaction is significantly more sluggish with methyl propargyl ether. Using 1 mol% of the catalyst, only 25% conversion of methyl propargyl ether was observed within 24 h at room temperature. Furthermore, methyl propargyl ether demonstrates the formation of cyclooctatetraenes in significant amounts at a low catalyst concentration, whereas a higher catalyst concentration (5 mol%) leads to benzene products exclusively. Density functional theory was used to provide insight into the reaction mechanism, including structures of putative dinuclear metallocyclopentadiene and metallocycloheptatriene intermediates.

20.
Chemistry ; 22(39): 13985-13998, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27535201

ABSTRACT

Reaction of 3,6-disubstituted-1,2,4,5-tetrazines with water and PEt3 forms the corresponding 1,4-dihydrotetrazine and OPEt3 . Thus PEt3 , as a stoichiometric reductant, reduces water, and the resulting two reducing equivalents serve to doubly hydrogenate the tetrazine. A variety of possible initial interactions between electron-deficient tetrazine and electron-rich PR3 , including a charge transfer complex, were evaluated by density functional calculations which revealed that the energy of all these make them spectroscopically undetectable at equilibrium, but one of these is nevertheless suggested as the intermediate in the observed redox reaction. The relationship of this to the Mitsunobu reaction, which absorbs the components of water evolved in the conversion of alcohol and carboxylic acid to ester, with desirable inversion at the alcohol carbon, is discussed. This enables a modified Mitsunobu reaction, with tetrazine replacing EtO2 CN=NCO2 Et (DEAD), which has the advantage that dihydrotetrazine can be recycled to tetrazine by oxidation with O2 , something impossible with the hydrogenated DEAD. For this tetrazine version, a betaine-like intermediate is undetectable, but its protonated form is characterized, including by X-ray structure and NMR spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...