Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Rev Mol Diagn ; 14(4): 469-87, 2014 May.
Article in English | MEDLINE | ID: mdl-24702023

ABSTRACT

Genomics has revolutionized the study of rare diseases. In this review, we overview the latest technological development, rare disease discoveries, implementation obstacles and bioethical challenges. First, we discuss the technology of genome and exome sequencing, including the different next-generation platforms and exome enrichment technologies. Second, we survey the pioneering centers and discoveries for rare diseases, including few of the research institutions that have contributed to the field, as well as an overview survey of different types of rare diseases that have had new discoveries due to next-generation sequencing. Third, we discuss the obstacles and challenges that allow for clinical implementation, including returning of results, informed consent and privacy. Last, we discuss possible outlook as clinical genomics receives wider adoption, as third-generation sequencing is coming onto the horizon, and some needs in informatics and software to further advance the field.


Subject(s)
DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Rare Diseases/genetics , Confidentiality , Genetic Testing/ethics , Genomics , Humans , Informed Consent , Molecular Diagnostic Techniques , Mutation , Rare Diseases/diagnosis
2.
Per Med ; 9(8): 805-819, 2012 Nov.
Article in English | MEDLINE | ID: mdl-29776237

ABSTRACT

A decade after the complete sequencing of the human genome, combined with recent advances in throughput and sequencing costs, the genetics of rare diseases has entered a new era. There has now been an explosion in the identification and mapping of rare diseases, with over 10,000 exomes having been sequenced to date. This article surveys the progress and development of technologies to understand rare disease; it provides a historical overview of traditional techniques such as karyotyping and homozygosity mapping, reviews current methods of whole-exome and -genome sequencing, and provides a future perspective on upcoming developments such as targeted drugs and gene therapy. This article will discuss the implications of these methods for rare disease research, along with a discussion of the success stories that provide great hope and optimism for patients and scientists alike.

SELECTION OF CITATIONS
SEARCH DETAIL
...