Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ChemMedChem ; 15(16): 1562-1570, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32613743

ABSTRACT

Loss of ß-cell mass and function can lead to insufficient insulin levels and ultimately to hyperglycemia and diabetes mellitus. The mainstream treatment approach involves regulation of insulin levels; however, approaches intended to increase ß-cell mass are less developed. Promoting ß-cell proliferation with low-molecular-weight inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) offers the potential to treat diabetes with oral therapies by restoring ß-cell mass, insulin content and glycemic control. GNF4877, a potent dual inhibitor of DYRK1A and glycogen synthase kinase 3ß (GSK3ß) was previously reported to induce primary human ß-cell proliferation in vitro and in vivo. Herein, we describe the lead optimization that lead to the identification of GNF4877 from an aminopyrazine hit identified in a phenotypic high-throughput screening campaign measuring ß-cell proliferation.


Subject(s)
Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Insulin-Secreting Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Mice , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Rats , Structure-Activity Relationship , Dyrk Kinases
2.
J Med Chem ; 63(6): 2958-2973, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32077280

ABSTRACT

Autoimmune deficiency and destruction in either ß-cell mass or function can cause insufficient insulin levels and, as a result, hyperglycemia and diabetes. Thus, promoting ß-cell proliferation could be one approach toward diabetes intervention. In this report we describe the discovery of a potent and selective DYRK1A inhibitor GNF2133, which was identified through optimization of a 6-azaindole screening hit. In vitro, GNF2133 is able to proliferate both rodent and human ß-cells. In vivo, GNF2133 demonstrated significant dose-dependent glucose disposal capacity and insulin secretion in response to glucose-potentiated arginine-induced insulin secretion (GPAIS) challenge in rat insulin promoter and diphtheria toxin A (RIP-DTA) mice. The work described here provides new avenues to disease altering therapeutic interventions in the treatment of type 1 diabetes (T1D).


Subject(s)
Aza Compounds/chemistry , Aza Compounds/pharmacology , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Indoles/chemistry , Indoles/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Aza Compounds/pharmacokinetics , Cell Proliferation/drug effects , Cells, Cultured , Diabetes Mellitus, Type 1/metabolism , Humans , Hypoglycemic Agents/pharmacokinetics , Indoles/pharmacokinetics , Insulin Secretion/drug effects , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Mice , Molecular Docking Simulation , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Dyrk Kinases
3.
Org Lett ; 21(3): 816-820, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30673257

ABSTRACT

A one-pot electrochemical nickel-catalyzed decarboxylative sp2-sp3 cross-coupling reaction has been developed using redox-active esters prepared in situ from alkyl carboxylates and  N-hydroxyphthalimide tetramethyluronium hexafluorophosphate (PITU). This undivided cell one-pot method enables C-C bond formation using inexpensive, benchtop-stable reagents with isolated yields up to 95% with good functional group tolerance, which includes nitrile, ketone, ester, alkene and selectivity over other aromatic halogens.

4.
Org Lett ; 20(23): 7429-7432, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30427201

ABSTRACT

A versatile flow synthesis method for in situ formation of organozinc reagents and subsequent cross-coupling with aryl halides and activated carboxylic acids is reported. Formation of organozinc reagents is achieved by pumping organic halides, in the presence of ZnCl2 and LiCl, through an activated Mg-packed column under flow conditions. This method provides efficient in situ formation of aryl, primary, secondary, and tertiary alkyl organozinc reagents, which are subsequently telescoped downstream to a Negishi or decarboxylative Negishi cross-coupling reaction. The described method offers access to a variety of C-C bond formations with organozinc reagents that are otherwise commercially unavailable or difficult to prepare under traditional batch reaction conditions.

5.
Chembiochem ; 19(8): 799-804, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29388367

ABSTRACT

Activated esters are widely used to label proteins at lysine side chains and N termini. These reagents are useful for labeling virtually any protein, but robust reactivity toward primary amines generally precludes site-selective modification. In a unique case, fluorophenyl esters are shown to preferentially label human kappa antibodies at a single lysine (Lys188) within the light-chain constant domain. Neighboring residues His189 and Asp151 contribute to the accelerated rate of labeling at Lys188 relative to the ≈40 other lysine sites. Enriched Lys188 labeling can be enhanced from 50-70 % to >95 % by any of these approaches: lowering reaction temperature, applying flow chemistry, or mutagenesis of specific residues in the surrounding protein environment. Our results demonstrated that activated esters with fluoro-substituted aromatic leaving groups, including a fluoronaphthyl ester, can be generally useful reagents for site-selective lysine labeling of antibodies and other immunoglobulin-type proteins.


Subject(s)
Lysine/metabolism , Proteins/metabolism , Crystallography, X-Ray , Density Functional Theory , Humans , Protein Conformation , Proteins/chemistry , Thermodynamics
6.
J Med Chem ; 59(17): 7901-14, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27502700

ABSTRACT

A series of potent PDGFR inhibitors has been identified. The series was optimized for duration of action in the lung. A novel kinase occupancy assay was used to directly measure target occupancy after i.t. dosing. Compound 25 shows 24 h occupancy of the PDGFR kinase domain, after a single i.t. dose and has efficacy at 0.03 mg/kg, in the rat moncrotaline model of pulmonary arterial hypertension. Examination of PK/PD data from the optimization effort has revealed in vitro:in vivo correlations which link duration of action in vivo with low permeability and high basicity and demonstrate that nonspecific binding to lung tissue increases with lipophilicity.


Subject(s)
Airway Remodeling/drug effects , Hypertension, Pulmonary/drug therapy , Niacinamide/analogs & derivatives , Pyrazoles/chemistry , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Vascular Remodeling/drug effects , Administration, Inhalation , Animals , Cell Line , Cell Proliferation , Hypertension, Pulmonary/pathology , Lung/blood supply , Membranes, Artificial , Molecular Docking Simulation , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Niacinamide/chemical synthesis , Niacinamide/chemistry , Niacinamide/pharmacology , Permeability , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Proto-Oncogene Proteins c-kit/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Rats , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor alpha/chemistry , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor beta/chemistry , Receptors, Platelet-Derived Growth Factor/chemistry , Structure-Activity Relationship
7.
ACS Med Chem Lett ; 6(5): 562-7, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005534

ABSTRACT

Deregulated kinase activities of tropomyosin receptor kinase (TRK) family members have been shown to be associated with tumorigenesis and poor prognosis in a variety of cancer types. In particular, several chromosomal rearrangements involving TRKA have been reported in colorectal, papillary thyroid, glioblastoma, melanoma, and lung tissue that are believed to be the key oncogenic driver in these tumors. By screening the Novartis compound collection, a novel imidazopyridazine TRK inhibitor was identified that served as a launching point for drug optimization. Structure guided drug design led to the identification of (R)-2-phenylpyrrolidine substituted imidazopyridazines as a series of potent, selective, orally bioavailable pan-TRK inhibitors achieving tumor regression in rats bearing KM12 xenografts. From this work the (R)-2-phenylpyrrolidine has emerged as an ideal moiety to incorporate in bicyclic TRK inhibitors by virtue of its shape complementarity to the hydrophobic pocket of TRKs.

8.
Cancer Chemother Pharmacol ; 75(1): 131-41, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25394774

ABSTRACT

PURPOSE: Neuroblastoma (NB) is one of the most common and deadly pediatric solid tumors. NB is characterized by clinical heterogeneity, from spontaneous regression to relentless progression despite intensive multimodality therapy. There is compelling evidence that members of the tropomyosin receptor kinase (Trk) family play important roles in these disparate clinical behaviors. Indeed, TrkB and its ligand, brain-derived neurotrophic factor (BDNF), are expressed in 50-60 % of high-risk NBs. The BDNF/TrkB autocrine pathway enhances survival, invasion, metastasis, angiogenesis and drug resistance. METHODS: We tested a novel pan-Trk inhibitor, GNF-4256 (Genomics Institute of the Novartis Research Foundation), in vitro and in vivo in a nu/nu athymic xenograft mouse model to determine its efficacy in inhibiting the growth of TrkB-expressing human NB cells (SY5Y-TrkB). Additionally, we assessed the ability of GNF-4256 to enhance NB cell growth inhibition in vitro and in vivo, when combined with conventional chemotherapeutic agents, irinotecan and temozolomide (Irino-TMZ). RESULTS: GNF-4256 inhibits TrkB phosphorylation and the in vitro growth of TrkB-expressing NBs in a dose-dependent manner, with an IC50 around 7 and 50 nM, respectively. Furthermore, GNF-4256 inhibits the growth of NB xenografts as a single agent (p < 0.0001 for mice treated at 40 or 100 mg/kg BID, compared to controls), and it significantly enhances the antitumor efficacy of irinotecan plus temozolomide (Irino-TMZ, p < 0.0071 compared to Irino-TMZ alone). CONCLUSIONS: Our data suggest that GNF-4256 is a potent and specific Trk inhibitor capable of significantly slowing SY5Y-TrkB growth, both in vitro and in vivo. More importantly, the addition of GNF-4256 significantly enhanced the antitumor efficacy of Irino-TMZ, as measured by in vitro and in vivo growth inhibition and increased event-free survival in a mouse xenograft model, without additional toxicity. These data strongly suggest that inhibition of TrkB with GNF-4256 can enhance the efficacy of current chemotherapeutic treatment for recurrent/refractory high-risk NBs with minimal or no additional toxicity.


Subject(s)
Antineoplastic Agents/therapeutic use , Drugs, Investigational/therapeutic use , Membrane Glycoproteins/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Neuroblastoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Camptothecin/administration & dosage , Camptothecin/adverse effects , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Camptothecin/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Dacarbazine/administration & dosage , Dacarbazine/adverse effects , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Dose-Response Relationship, Drug , Drugs, Investigational/administration & dosage , Drugs, Investigational/pharmacokinetics , Drugs, Investigational/pharmacology , Half-Life , Humans , Irinotecan , Membrane Glycoproteins/metabolism , Mice, Nude , Neoplasm Proteins/metabolism , Neuroblastoma/blood , Neuroblastoma/metabolism , Neuroblastoma/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational/drug effects , Protein-Tyrosine Kinases/metabolism , Receptor, trkB , Survival Analysis , Temozolomide , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
9.
Expert Opin Ther Pat ; 23(10): 1317-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23826715

ABSTRACT

INTRODUCTION: The development of small molecule agonists of the liver X receptors (LXRs) has been an area of interest for over a decade, given the critical role of those receptors in cholesterol metabolism, glucose homeostasis, inflammation, innate immunity and lipogenesis. Many potential indications have been characterized over time including atherosclerosis, diabetes, inflammation, Alzheimer's disease and cancer. However, concerns about the lipogenic effects of full LXRα/ß agonists have required extensive efforts aimed at identifying LXRß agonist with limited activity on the LXRα receptor to increase the safety margins. AREAS COVERED: This review includes a summary of the LXR agonists that have reached the clinic and summarizes the patent applications for LXR modulators from September 2009 to December 2012 with emphasis on chemical matters, biological data associated with selected analogs and therapeutic indications. EXPERT OPINION: As LXR agonists have the potential to be useful for many indications, the scientific community, despite setbacks due to on-target side effects, has maintained interest and devised strategies to overcome safety hurdles. While a clinical proof of concept still remains elusive, the recent advancement of compounds into the clinic highlights that acceptable safety margins in preclinical species have been achieved.


Subject(s)
Liver/metabolism , Orphan Nuclear Receptors/drug effects , Animals , Atherosclerosis/drug therapy , Drug Approval , Drug Industry , Humans , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Liver/drug effects , Liver X Receptors , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/antagonists & inhibitors , Patents as Topic
10.
ACS Med Chem Lett ; 3(2): 140-5, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-24900443

ABSTRACT

Neurotrophins and their receptors (TRKs) play key roles in the development of the nervous system and the maintenance of the neural network. Accumulating evidence points to their role in malignant transformations, chemotaxis, metastasis, and survival signaling and may contribute to the pathogenesis of a variety of tumors of both neural and non-neural origin. By screening the GNF kinase collection, a series of novel oxindole inhibitors of TRKs were identified. Optimization led to the identification of GNF-5837 (22), a potent, selective, and orally bioavailable pan-TRK inhibitor that inhibited tumor growth in a mouse xenograft model derived from RIE cells expressing both TRKA and NGF. The properties of 22 make it a good tool for the elucidation of TRK biology in cancer and other nononcology indications.

11.
Chem Commun (Camb) ; 47(34): 9588-90, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21607236

ABSTRACT

A D(3)-symmetric knotted cyclophane, with a subgraph of trefoil topology, was synthesized by cyclization of a D(3)-symmetric scaffold. Control of configuration at the three metal-based stereocenters arises from a bascule/pivot mechanism.


Subject(s)
Chemistry Techniques, Synthetic , Ethers, Cyclic/chemistry , Ethers, Cyclic/chemical synthesis , Models, Molecular , Molecular Conformation , Stereoisomerism , Substrate Specificity
12.
Org Biomol Chem ; 3(17): 3105-16, 2005 Sep 07.
Article in English | MEDLINE | ID: mdl-16106292

ABSTRACT

Concatenated macrocycles containing manisyl-substituted tridentate ligands 2,2':6',2''-terpyridine and 2-pyridin-2-yl-1,10-phenanthroline (simply referred to as terpyridine and pyridyl-phenanthroline herein) have been prepared via dual cyclization procedures. The manisyl derivative (manisyl = 4-methoxy-2,6-dimethylphenyl) was chosen for its ability to improve solubility while simultaneously incorporating functionality. Deprotection of the methoxy groups provided a soluble ligand that was re-alkylated with an array of terminal alkyne and alkene linkers. The tridentate coordinating ability of these ligands enabled complexation with Ru(ii) and Fe(ii), generating achiral and racemic octahedral complexes for terpyridine and pyridyl-phenanthroline, respectively. Subsequent macrocyclization via olefin metathesis or copper-mediated alkyne coupling afforded the corresponding catenanes, and in some cases a figure-eight macrocycle. The difference in symmetry and the presence of the manisyl group allowed the distinction between the catenane and the undesired figure-eight to be made directly by (1)H NMR. Metal-free achiral and racemic catenanes were obtained by liberating Fe(ii) from the octahedral bound title ligands by treatment with hydrogen peroxide.


Subject(s)
Catenanes/chemical synthesis , Molecular Mimicry , Organometallic Compounds/chemical synthesis , Phenanthrolines/chemistry , Pyridines , Catenanes/chemistry , Crystallography, X-Ray , Cyclization , Iron/chemistry , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Pyridines/chemistry , Ruthenium/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...