Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Res Pract Thromb Haemost ; 8(1): 102276, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38226339

ABSTRACT

Background: Hyperlipidemia is associated with chronic inflammation and thromboinflammation. This is an underlying cause of several cardiovascular diseases, including atherosclerosis. In diseased blood vessels, rampant thrombin generation results in the initiation of the coagulation cascade, activation of platelets, and endothelial cell dysfunction. Coagulation factor (F) XI represents a promising therapeutic target to reduce thromboinflammation, as it is uniquely positioned at an intersection between inflammation and thrombin generation. Objectives: This study aimed to investigate the role of FXI in promoting platelet and endothelial cell activation in a model of hyperlipidemia. Methods: Nonhuman primates (NHPs) were fed a standard chow diet (lean, n = 6) or a high-fat diet (obese, n = 8) to establish a model of hyperlipidemia. Obese NHPs were intravenously administered a FXI blocking antibody (2 mg/kg) and studied at baseline and at 1, 7, 14, 21, and 28 days after drug administration. Platelet activation and inflammatory markers were measured using fluorescence-activated cell sorting or enzyme-linked immunosorbent assay. Molecular imaging was used to quantify vascular cell adhesion molecule 1 (VCAM-1) expression at the carotid bifurcation. Results: Obese NHPs demonstrated increased sensitivity for platelet P-selectin expression and phosphatidylserine exposure in response to platelet GPVI or PAR agonists compared with lean NHPs. Obese NHPs exhibited elevated levels of C-reactive protein, cathepsin D, and myeloperoxidase compared with lean NHPs. Following pharmacological inhibition of FIX activation by FXIa, platelet priming for activation by GPVI or PAR agonists, C-reactive protein levels, and endothelial VCAM-1 levels were reduced in obese NHPs. Conclusion: FXI activation promotes the proinflammatory phenotype of hyperlipidemia by priming platelet activation and inciting endothelial cell dysfunction.

2.
Arterioscler Thromb Vasc Biol ; 44(1): 290-299, 2024 01.
Article in English | MEDLINE | ID: mdl-37970718

ABSTRACT

BACKGROUND: Despite the ubiquitous utilization of central venous catheters in clinical practice, their use commonly provokes thromboembolism. No prophylactic strategy has shown sufficient efficacy to justify routine use. Coagulation factors FXI (factor XI) and FXII (factor XII) represent novel targets for device-associated thrombosis, which may mitigate bleeding risk. Our objective was to evaluate the safety and efficacy of an anti-FXI mAb (monoclonal antibody), gruticibart (AB023), in a prospective, single-arm study of patients with cancer receiving central line placement. METHODS: We enrolled ambulatory cancer patients undergoing central line placement to receive a single dose of gruticibart (2 mg/kg) administered through the venous catheter within 24 hours of placement and a follow-up surveillance ultrasound at day 14 for evaluation of catheter thrombosis. A parallel, noninterventional study was used as a comparator. RESULTS: In total, 22 subjects (n=11 per study) were enrolled. The overall incidence of catheter-associated thrombosis was 12.5% in the interventional study and 40.0% in the control study. The anti-FXI mAb, gruticibart, significantly prolonged the activated partial thromboplastin time in all subjects on day 14 compared with baseline (P<0.001). Gruticibart was well tolerated and without infusion reactions, drug-related adverse events, or clinically relevant bleeding. Platelet flow cytometry demonstrated no difference in platelet activation following administration of gruticibart. T (thrombin)-AT (antithrombin) and activated FXI-AT complexes increased following central line placement in the control study, which was not demonstrated in our intervention study. CRP (C-reactive protein) did not significantly increase on day 14 in those who received gruticibart, but it did significantly increase in the noninterventional study. CONCLUSIONS: FXI inhibition with gruticibart was well tolerated without any significant adverse or bleeding-related events and resulted in a lower incidence of catheter-associated thrombosis on surveillance ultrasound compared with the published literature and our internal control study. These findings suggest that targeting FXI could represent a safe intervention to prevent catheter thrombosis. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04465760.


Subject(s)
Neoplasms , Thrombosis , Humans , Factor XI/metabolism , Prospective Studies , Thrombosis/etiology , Thrombosis/prevention & control , Thrombosis/drug therapy , Hemorrhage/chemically induced , Catheters/adverse effects , Neoplasms/drug therapy , Neoplasms/complications
3.
Platelets ; 35(1): 2290916, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38099327

ABSTRACT

Platelets are core components of thrombi but their effect on thrombus burden during deep vein thrombosis (DVT) has not been fully characterized. We examined the role of thrombopoietin-altered platelet count on thrombus burden in a murine stasis model of DVT. To modulate platelet count compared to baseline, CD1 mice were pretreated with thrombopoietin antisense oligonucleotide (THPO-ASO, 56% decrease), thrombopoietin mimetic (TPO-mimetic, 36% increase), or saline (within 1%). Thrombi and vein walls were examined on postoperative days (POD) 3 and 7. Thrombus weights on POD 3 were not different between treatment groups (p = .84). The mean thrombus weights on POD 7 were significantly increased in the TPO-mimetic cohort compared to the THPO-ASO (p = .005) and the saline (p = .012) cohorts. Histological grading at POD 3 revealed a significantly increased smooth muscle cell presence in the thrombi and CD31 positive channeling in the vein wall of the TPO-mimetic cohort compared to the saline and THPO-ASO cohorts (p < .05). No differences were observed in histology on POD 7. Thrombopoietin-induced increased platelet count increased thrombus weight on POD 7 indicating platelet count may regulate thrombus burden during early resolution of venous thrombi in this murine stasis model of DVT.


Deep vein thrombosis (DVT) is a pathology in which blood clots form in the deep veins of our body. Usually occurring in the legs, these clots can be dangerous if they dislodge and travel to the heart and are pumped into the lungs. Often these clots do not travel and heal where they formed. However, as the body heals the clot it may also cause damage to the vein wall and predispose the patient to future clots, i.e., the biggest risk factor for a second clot is the first clot. DVT can also cause symptoms of pain, swelling, and redness in the long-term, leading to post-thrombotic syndrome where the initial symptoms of the clot persist for a long time. All blood clots have common components of red blood cells, white blood cells, platelets, and fibrin in varying concentrations. Humans maintain a platelet count between 150 and 400 thousand platelets per microliter of our blood. However, diseases like cancer or medications like chemotherapy can cause a change in our body's platelet count. The effect of a changing platelet count on the size (clot burden) of DVT clot and how platelet count could affect DVT as the clot heals is not fully understood. Studying this might help us develop better targets and treat patients with a wide range of platelet counts who experience DVT. In this study, we intentionally decreased, left unchanged, and increased platelet counts in mice and then created a DVT to study what the effect of low, normal, and high platelet counts, respectively, would be on the clot burden. We observed that mice with higher platelet counts had a higher clot burden during the early part of the healing process of the clot. Within this study, we can conclude that higher platelet counts may lead to higher clot burden in DVT which furthers our understanding of how platelet count affects clot burden during DVT.


Subject(s)
Thrombosis , Venous Thrombosis , Humans , Mice , Animals , Venous Thrombosis/drug therapy , Venous Thrombosis/pathology , Platelet Count , Thrombopoietin/pharmacology , Blood Platelets/pathology
4.
Blood ; 138(22): 2173-2184, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34086880

ABSTRACT

End-stage renal disease (ESRD) patients on chronic hemodialysis have repeated blood exposure to artificial surfaces that can trigger clot formation within the hemodialysis circuit. Dialyzer clotting can lead to anemia despite erythropoietin and iron supplementation. Unfractionated heparin prevents clotting during hemodialysis, but it is not tolerated by all patients. Although heparin-free dialysis is performed, intradialytic blood entrapment can be problematic. To address this issue, we performed a randomized, double-blind, phase 2 study comparing AB023, a unique antibody that binds factor XI (FXI) and blocks its activation by activated FXII, but not by thrombin, to placebo in 24 patients with ESRD undergoing heparin-free hemodialysis. Patients were randomized to receive a single predialysis dose of AB023 (0.25 or 0.5 mg/kg) or placebo in a 2:1 ratio, and safety and preliminary efficacy were compared with placebo and observations made prior to dosing within each treatment arm. AB023 administration was not associated with impaired hemostasis or other drug-related adverse events. Occlusive events requiring hemodialysis circuit exchange were less frequent and levels of thrombin-antithrombin complexes and C-reactive protein were lower after AB023 administration compared with data collected prior to dosing. AB023 also reduced potassium and iron entrapment in the dialyzers, consistent with less blood accumulation within the dialyzers. We conclude that despite the small sample size, inhibition of contact activation-induced coagulation with AB023 was well tolerated and reduced clotting within the dialyzer. This trial was registered at www.clinicaltrials.gov as #NCT03612856.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antithrombins/therapeutic use , Kidney Failure, Chronic/therapy , Renal Dialysis/methods , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antithrombins/adverse effects , Double-Blind Method , Factor XI/antagonists & inhibitors , Female , Hemostasis/drug effects , Humans , Male , Middle Aged , Placebo Effect , Renal Dialysis/adverse effects , Thrombosis/etiology , Thrombosis/prevention & control
5.
J Immunol ; 206(8): 1784-1792, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33811105

ABSTRACT

Complement factor H (CFH) is the major inhibitor of the alternative pathway of the complement system and is structurally related to beta2-glycoprotein I, which itself is known to bind to ligands, including coagulation factor XI (FXI). We observed reduced complement activation when FXI activation was inhibited in a baboon model of lethal systemic inflammation, suggesting cross-talk between FXI and the complement cascade. It is unknown whether FXI or its activated form, activated FXI (FXIa), directly interacts with the complement system. We explored whether FXI could interact with and inhibit the activity of CFH. We found that FXIa neutralized CFH by cleavage of the R341/R342 bonds. FXIa reduced the capacity of CFH to enhance the cleavage of C3b by factor I and the decay of C3bBb. The binding of CFH to human endothelial cells was also reduced after incubating CFH with FXIa. The addition of either short- or long-chain polyphosphate enhanced the capacity of FXIa to cleave CFH. FXIa also cleaved CFH that was present on endothelial cells and in the secretome from blood platelets. The generation of FXIa in plasma induced the cleavage of CFH. Moreover, FXIa reduced the cleavage of C3b by factor I in serum. Conversely, we observed that CFH inhibited FXI activation by either thrombin or FXIIa. Our study provides, to our knowledge, a novel molecular link between the contact pathway of coagulation and the complement system. These results suggest that FXIa generation enhances the activity of the complement system and thus may potentiate the immune response.


Subject(s)
Blood Platelets/metabolism , Complement Factor H/metabolism , Endothelial Cells/metabolism , Factor XIa/metabolism , Inflammation/metabolism , Animals , Blood Coagulation , Complement C3b/metabolism , Complement Pathway, Alternative , Fibrinogen/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Papio , Protein Binding , Receptor Cross-Talk
6.
Blood ; 138(2): 178-189, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33598692

ABSTRACT

Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model of lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. Here we used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII in this baboon model. Compared with untreated control animals, repeated 5C12 administration before and at 8 and 24 hours after bacterial challenge prevented the dramatic increase in circulating complexes of contact system enzymes FXIIa, FXIa, and kallikrein with antithrombin or C1 inhibitor, and prevented cleavage and consumption of high-molecular-weight kininogen. Activation of several coagulation factors and fibrinolytic enzymes was also prevented. D-dimer levels exhibited a profound increase in the untreated animals but not in the treated animals. The antibody also blocked the increase in plasma biomarkers of inflammation and cell damage, including tumor necrosis factor, interleukin (IL)-1ß, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, nucleosomes, and myeloperoxidase. Based on clinical presentation and circulating biomarkers, inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms and were asymptomatic at day 7, whereas untreated control animals suffered irreversible multiorgan failure and had to be euthanized within 2 days after the bacterial challenge. This study confirms and extends our previous finding that at least 2 enzymes of the contact activation complex, FXIa and FXIIa, play critical roles in the development of an acute and terminal inflammatory response in baboons challenged with heat-inactivated S aureus.


Subject(s)
Factor XII/metabolism , Multiple Organ Failure/metabolism , Multiple Organ Failure/microbiology , Staphylococcus aureus/physiology , Animals , Antibodies/therapeutic use , Blood Coagulation Disorders/complications , Blood Coagulation Disorders/immunology , Blood Coagulation Disorders/microbiology , Blood Platelets/metabolism , Cellular Microenvironment , Complement Activation , Factor XII/immunology , Female , Fibrinogen/metabolism , Hot Temperature , Inflammation/complications , Inflammation/pathology , Male , Multiple Organ Failure/immunology , Papio , Staphylococcal Infections/drug therapy , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Survival Analysis
7.
Am J Physiol Cell Physiol ; 320(3): C365-C374, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33471623

ABSTRACT

Factor XI (FXI) has been shown to bind platelets, but the functional significance of this observation remains unknown. Platelets are essential for hemostasis and play a critical role in thrombosis, whereas FXI is not essential for hemostasis but promotes thrombosis. An apparent functional contradiction, platelets are known to support thrombin generation, yet platelet granules release protease inhibitors, including those of activated FXI (FXIa). We aim to investigate the secretory and binding mechanisms by which platelets could support or inhibit FXIa activity. The presence of platelets enhanced FXIa activity in a purified system and increased coagulation Factor IX (FIX) activation by FXIa and fibrin generation in human plasma. In contrast, platelets reduced the activation of FXI by activated coagulation factor XII (FXIIa) and the activation of FXII by kallikrein (PKa). Incubation of FXIa with the platelet secretome, which contains FXIa inhibitors, such as protease nexin-II, abolished FXIa activity, yet in the presence of activated platelets, the secretome was not able to block the activity of FXIa. FXIa variants lacking the anion-binding sites did not alter the effect of platelets on FXIa activity or interaction. Western blot analysis of bound FXIa [by FXIa-platelet membrane immunoprecipitation] showed that the interaction with platelets is zinc dependent and, unlike FXI binding to platelets, not dependent on glycoprotein Ib. FXIa binding to the platelet membrane increases its capacity to activate FIX in plasma likely by protecting it from inhibition by inhibitors secreted by activated platelets. Our findings suggest that an interaction of FXIa with the platelet surface may induce an allosteric modulation of FXIa.


Subject(s)
Blood Platelets/metabolism , Factor XIa/metabolism , Adolescent , Amyloid beta-Protein Precursor/metabolism , Binding Sites/physiology , Blood Coagulation/physiology , Female , Hemostasis/physiology , Humans , Male , Thrombin/metabolism , Thrombosis/metabolism
8.
J Thromb Haemost ; 19(4): 1001-1017, 2021 04.
Article in English | MEDLINE | ID: mdl-33421301

ABSTRACT

BACKGROUND: Human coagulation factor (F) XI deficiency, a defect of the contact activation system, protects against venous thrombosis, stroke, and heart attack, whereas FXII, plasma prekallikrein, or kininogen deficiencies are asymptomatic. FXI deficiency, inhibition of FXI production, activated FXI (FXIa) inhibitors, and antibodies to FXI that interfere with FXI/FXII interactions reduce experimental thrombosis and inflammation. FXI inhibitors are antithrombotic in patients, and FXI and FXII deficiencies are atheroprotective in apolipoprotein E-deficient mice. OBJECTIVES: Investigate the effects of pharmacological targeting of FXI in experimental models of atherogenesis and established atherosclerosis. METHODS AND RESULTS: Low-density lipoprotein receptor-knockout (Ldlr-/- ) mice were administered high-fat diet (HFD) for 8 weeks; concomitantly, FXI was targeted with anti-FXI antibody (14E11) or FXI antisense oligonucleotide (ASO). 14E11 and FXI-ASO reduced atherosclerotic lesion area in proximal aortas when compared with controls, and 14E11 also reduced aortic sinus lesions. In an established disease model, in which therapy was given after atherosclerosis had developed, Ldlr-/- mice were fed HFD for 8 weeks and then administered 14E11 or FXI-ASO weekly until 16 weeks on HFD. In this established disease model, 14E11 and FXI-ASO reduced atherosclerotic lesion area in proximal aortas, but not in aortic sinus. In cultures of human endothelium, FXIa exposure disrupted VE-Cadherin expression and increased endothelial lipoprotein permeability. Strikingly, we found that 14E11 prevented the disruption of VE-Cadherin expression in aortic sinus lesions observed in the atherogenesis mouse model. CONCLUSION: Pharmacological targeting of FXI reduced atherogenesis in Ldlr-/- mice. Interference with the contact activation system may safely reduce development or progression of atherosclerosis.


Subject(s)
Atherosclerosis , Factor XI Deficiency , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Blood Coagulation , Factor XI/genetics , Humans , Lipoproteins, LDL , Mice , Receptors, LDL/genetics
9.
Res Pract Thromb Haemost ; 4(4): 500-505, 2020 May.
Article in English | MEDLINE | ID: mdl-32542210

ABSTRACT

Coronavirus disease 2019 (COVID-19) is predicted to overwhelm health care capacity in the United States and worldwide, and, as such, interventions that could prevent clinical decompensation and respiratory compromise in infected patients are desperately needed. Excessive cytokine release and activation of coagulation appear to be key drivers of COVID-19 pneumonia and associated mortality. Contact activation has been linked to pathologic upregulation of both inflammatory mediators and coagulation, and accumulating preclinical and clinical data suggest it to be a rational therapeutic target in patients with COVID-19. Pharmacologic inhibition of the interaction between coagulation factors XI and XII has been shown to prevent consumptive coagulopathy, pathologic systemic inflammatory response, and mortality in at least 2 types of experimental sepsis. Importantly, inhibition of contact activation also prevented death from Staphylococcus aureus-induced lethal systemic inflammatory response syndrome in nonhuman primates. The contact system is likely dispensable for hemostasis and may not be needed for host immunity, suggesting it to be a reasonably safe target that will not result in immunosuppression or bleeding. As a few drugs targeting contact activation are already in clinical development, immediate clinical trials for their use in patients with COVID-19 are potentially feasible for the prevention or treatment of respiratory distress.

10.
Res Pract Thromb Haemost ; 4(2): 205-216, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32110750

ABSTRACT

BACKGROUND: The contact factor XII (FXII) activates upon contact with a variety of charged surfaces. Activated FXII (FXIIa) activates factor XI, which activates factor IX, resulting in thrombin generation, platelet activation, and fibrin formation. In both in vitro and in vivo rabbit models, components of medical devices, including extracorporeal oxygenators, are known to incite fibrin formation in a FXII-dependent manner. Since FXII has no known role in hemostasis and its inhibition is therefore likely a safe antithrombotic approach, we investigated whether FXII inhibition also reduces accumulation of platelets in extracorporeal oxygenators. OBJECTIVES: We aimed to determine the effect of FXII inhibition on platelet deposition in perfused extracorporeal membrane oxygenators in nonhuman primates. METHODS: A potent FXII neutralizing monoclonal antibody, 5C12, was administered intravenously to block contact activation in baboons. Extracorporeal membrane oxygenators were temporarily deployed into chronic arteriovenous access shunts. Radiolabeled platelet deposition in oxygenators was quantified in real time using gamma camera imaging. Biochemical assays were performed to characterize the method of action of 5C12. RESULTS: The anti-FXII monoclonal antibody 5C12 recognized both the alpha and beta forms of human and baboon FXII by binding to the protease-containing domain, and inhibited FXIIa activity. Administration of 5C12 to baboons reduced platelet deposition and fibrin formation in the extracorporeal membrane oxygenators, in both the presence and absence of systemic low-dose unfractionated heparin. The antiplatelet dose of 5C12 did not cause measurable increases in template bleeding times in baboons. CONCLUSIONS: FXII represents a possible therapeutic and safe target for reducing platelet deposition and fibrin formation during medical interventions including extracorporeal membrane oxygenation.

11.
Blood ; 135(9): 689-699, 2020 02 27.
Article in English | MEDLINE | ID: mdl-31977000

ABSTRACT

Although thrombin is a key enzyme in the coagulation cascade and is required for both normal hemostasis and pathologic thrombogenesis, it also participates in its own negative feedback via activation of protein C, which downregulates thrombin generation by enzymatically inactivating factors Va and VIIIa. Our group and others have previously shown that thrombin's procoagulant and anticoagulant activities can be effectively disassociated to varying extents through site-directed mutagenesis. The thrombin mutant W215A/E217A (WE thrombin) has been one of the best characterized constructs with selective activity toward protein C. Although animal studies have demonstrated that WE thrombin acts as an anticoagulant through activated protein C (APC) generation, the observed limited systemic anticoagulation does not fully explain the antithrombotic potency of this or other thrombin mutants. AB002 (E-WE thrombin) is an investigational protein C activator thrombin analog in phase 2 clinical development (clinicaltrials.gov NCT03963895). Here, we demonstrate that this molecule is a potent enzyme that is able to rapidly interrupt arterial-type thrombus propagation at exceedingly low doses (<2 µg/kg, IV), yet without substantial systemic anticoagulation in baboons. We demonstrate that AB002 produces APC on platelet aggregates and competitively inhibits thrombin-activatable fibrinolysis inhibitor (carboxypeptidase B2) activation in vitro, which may contribute to the observed in vivo efficacy. We also describe its safety and activity in a phase 1 first-in-human clinical trial. Together, these results support further clinical evaluation of AB002 as a potentially safe and effective new approach for treating or preventing acute thrombotic and thromboembolic conditions. This trial was registered at www.clinicaltrials.gov as #NCT03453060.


Subject(s)
Fibrinolytic Agents/pharmacology , Protein C/drug effects , Thrombin/analogs & derivatives , Thrombosis/prevention & control , Adult , Animals , Double-Blind Method , Humans , Middle Aged , Papio , Recombinant Proteins/pharmacology
12.
Arterioscler Thromb Vasc Biol ; 39(4): 799-809, 2019 04.
Article in English | MEDLINE | ID: mdl-30700130

ABSTRACT

Objective- Factor XI (FXI) contributes to thrombotic disease while playing a limited role in normal hemostasis. We generated a unique, humanized anti-FXI antibody, AB023, which blocks factor XIIa-mediated FXI activation without inhibiting FXI activation by thrombin or the procoagulant function of FXIa. We sought to confirm the antithrombotic activity of AB023 in a baboon thrombosis model and to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics in healthy adult subjects. Approach and Results- In a primate model of acute vascular graft thrombosis, AB023 reduced platelet and fibrin accumulation within the grafts by >75%. To evaluate the safety of AB023, we performed a first-in-human study in healthy adult volunteers without any serious adverse events. Overall, 10 of 21 (48%) subjects experienced 20 treatment-emergent adverse events, with 7 of 16 (44%) subjects following active treatment and 3 of 5 (60%) subjects following placebo. AB023 did not increase bleeding or prothrombin times. Anticoagulation was verified by a saturable ≈2-fold prolongation of the partial thromboplastin time for over 1 month after the highest dose. Conclusions- AB023, which inhibits contact activation-initiated blood coagulation in vitro and experimental thrombus formation in primates, produced a dose-dependent duration of limited anticoagulation without drug-related adverse effects in a phase 1 trial. When put in context with earlier observations suggesting that FXI contributes to venous thromboembolism and cardiovascular disease, although contributing minimally to hemostasis, our data further justify clinical evaluation of AB023 in conditions where contact-initiated FXI activation is suspected to have a pathogenic role. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT03097341.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , Factor XI/antagonists & inhibitors , Factor XIa/physiology , Fibrinolytic Agents/therapeutic use , Adult , Animals , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Anticoagulants/adverse effects , Anticoagulants/immunology , Anticoagulants/pharmacology , Area Under Curve , Dose-Response Relationship, Drug , Double-Blind Method , Factor XI/immunology , Factor XIIa/physiology , Fibrinolytic Agents/adverse effects , Fibrinolytic Agents/immunology , Fibrinolytic Agents/pharmacology , Graft Occlusion, Vascular/drug therapy , Humans , Papio , Partial Thromboplastin Time
13.
Blood Adv ; 3(4): 658-669, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808684

ABSTRACT

Staphylococcus aureus infections can produce systemic bacteremia and inflammation in humans, which may progress to severe sepsis or septic shock, even with appropriate antibiotic treatment. Sepsis may be associated with disseminated intravascular coagulation and consumptive coagulopathy. In some types of mouse infection models, the plasma coagulation protein factor XI (FXI) contributes to the pathogenesis of sepsis. We hypothesize that FXI also contributes to the pathogenesis of sepsis in primates, and that pharmacological interference with FXI will alter the outcome of Staphylococcus aureus-induced lethality in a baboon model. Pretreatment of baboons with the anti-FXI antibody 3G3, a humanized variant of the murine monoclonal 14E11 that blocks FXI activation by FXIIa, substantially reduced the activation of coagulation, as reflected by clotting times and plasma complexes of coagulation proteases (FXIIa, FXIa, FIXa, FXa, FVIIa, and thrombin) with serpins (antithrombin or C1 inhibitor) following infusion of heat-inactivated S aureus 3G3 treatment reduced fibrinogen and platelet consumption, fibrin deposition in tissues, neutrophil activation and accumulation in tissues, cytokine production, kininogen cleavage, cell death, and complement activation. Overall, 3G3 infusion protected the structure and function of multiple vital organs, including lung, heart, liver, and kidney. All treated animals reached the end point survival (7 days), whereas all nontreated animals developed terminal organ failure within 28 hours. We conclude that FXI plays a role in the pathogenesis of S aureus-induced disseminated intravascular coagulation and lethality in baboons. The results provide proof of concept for future therapeutic interventions that may prevent sepsis-induced organ failure and save lives in certain forms of sepsis.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Factor XI/immunology , Sepsis/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Animals , Antibodies, Monoclonal, Humanized/immunology , Blood Coagulation/drug effects , Factor XI/antagonists & inhibitors , Factor XIIa/immunology , Humans , Papio ursinus , Sepsis/blood , Sepsis/therapy , Staphylococcal Infections/blood , Staphylococcal Infections/therapy
15.
Dev Neurobiol ; 76(9): 1003-13, 2016 09.
Article in English | MEDLINE | ID: mdl-26663679

ABSTRACT

Dendritic morphology is a critical determinant of neuronal connectivity, and in postganglionic sympathetic neurons, tonic activity correlates directly with the size of the dendritic arbor. Thus, identifying signaling mechanisms that regulate dendritic arborization of sympathetic neurons is important to understanding how functional neural circuitry is established and maintained in the sympathetic nervous system. Bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, downstream signaling events that link BMP receptor activation to dendritic growth are poorly characterized. We previously reported that BMP7 upregulates p75(NTR) mRNA in cultured sympathetic neurons. This receptor is implicated in controlling dendritic growth in central neurons but whether p75(NTR) regulates dendritic growth in peripheral neurons is not known. Here, we demonstrate that BMP7 increases p75(NTR) protein in cultured sympathetic neurons, and this effect is blocked by pharmacologic inhibition of signaling via BMP type I receptor. BMP7 does not trigger dendritic growth in sympathetic neurons dissociated from superior cervical ganglia (SCG) of p75(NTR) nullizygous mice, and overexpression of p75(NTR) in p75(NTR) -/- neurons is sufficient to cause dendritic growth even in the absence of BMP7. Morphometric analyses of SCG from wild-type versus p75(NTR) nullizygous mice at 3, 6, and 12 to 16 weeks of age indicated that genetic deletion of p75(NTR) does not prevent dendritic growth but does stunt dendritic maturation in sympathetic neurons. These data support the hypotheses that p75(NTR) is involved in downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that p75(NTR) signaling positively modulates dendritic complexity in sympathetic neurons in vivo. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1003-1013, 2016.


Subject(s)
Bone Morphogenetic Protein 7/metabolism , Dendrites/physiology , Receptors, Nerve Growth Factor/metabolism , Signal Transduction/physiology , Superior Cervical Ganglion/metabolism , Animals , Dendrites/metabolism , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Nerve Tissue Proteins , Neuronal Plasticity/physiology , Rats , Rats, Sprague-Dawley , Receptors, Growth Factor , Receptors, Nerve Growth Factor/genetics
16.
Exp Neurol ; 249: 111-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24013014

ABSTRACT

Development of cardiac sympathetic heterogeneity after myocardial infarction contributes to ventricular arrhythmias and sudden cardiac death. Regions of sympathetic hyperinnervation and denervation appear in the viable myocardium beyond the infarcted area. While elevated nerve growth factor (NGF) is implicated in sympathetic hyperinnervation, the mechanisms underlying denervation are unknown. Recent studies show that selective activation of the p75 neurotrophin receptor (p75(NTR)) in sympathetic neurons causes axon degeneration. We used mice that lack p75(NTR) to test the hypothesis that activation of p75(NTR) causes peri-infarct sympathetic denervation after cardiac ischemia-reperfusion. Wild type hearts exhibited sympathetic denervation adjacent to the infarct 24h and 3 days after ischemia-reperfusion, but no peri-infarct sympathetic denervation occurred in p75(NTR)-/- mice. Sympathetic hyperinnervation was found in the distal peri-infarct myocardium in both genotypes 3 days after MI, and hyperinnervation was increased in the p75(NTR)-/- mice. By 7 days after ischemia-reperfusion, cardiac sympathetic innervation density returned back to sham-operated levels in both genotypes, indicating that axonal pruning did not require p75(NTR). Prior studies revealed that proNGF is elevated in the damaged left ventricle after ischemia-reperfusion, as is mRNA encoding brain-derived neurotrophic factor (BDNF). ProNGF and BDNF preferentially bind p75(NTR) rather than TrkA on sympathetic neurons. Immunohistochemistry using Bdnf-HA mice confirmed the presence of BDNF or proBDNF in the infarct after ischemia-reperfusion. Thus, at least two p75(NTR) ligands are elevated in the left ventricle after ischemia-reperfusion where they may stimulate p75(NTR)-dependent denervation of peri-infarct myocardium. In contrast, NGF-induced sympathetic hyperinnervation in the distal peri-infarct ventricle is attenuated by p75(NTR).


Subject(s)
Heart Injuries/metabolism , Heart Ventricles/innervation , Heart Ventricles/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Receptors, Nerve Growth Factor/deficiency , Sympathectomy/methods , Animals , Female , Heart Injuries/pathology , Heart Ventricles/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/pathology , Myocardium/pathology
17.
J Exp Med ; 209(12): 2291-305, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23091165

ABSTRACT

Treatment of acute cardiac ischemia focuses on reestablishment of blood flow in coronary arteries. However, impaired microvascular perfusion damages peri-infarct tissue, despite arterial patency. Identification of cytokines that induce microvascular dysfunction would provide new targets to limit microvascular damage. Pro-nerve growth factor (NGF), the precursor of NGF, is a well characterized cytokine in the brain induced by injury. ProNGF activates p75 neurotrophin receptor (p75(NTR)) and sortilin receptors to mediate proapoptotic responses. We describe induction of proNGF by cardiomyocytes, and p75(NTR) in human arterioles after fatal myocardial infarction, but not with unrelated pathologies. After mouse cardiac ischemia-reperfusion (I-R) injury, rapid up-regulation of proNGF by cardiomyocytes and p75(NTR) by microvascular pericytes is observed. To identify proNGF actions, we generated a mouse expressing a mutant Ngf allele with impaired processing of proNGF to mature NGF. The proNGF-expressing mouse exhibits cardiac microvascular endothelial activation, a decrease in pericyte process length, and increased vascular permeability, leading to lethal cardiomyopathy in adulthood. Deletion of p75(NTR) in proNGF-expressing mice rescues the phenotype, confirming the importance of p75(NTR)-expressing pericytes in the development of microvascular injury. Furthermore, deficiency in p75(NTR) limits infarct size after I-R. These studies identify novel, nonneuronal actions for proNGF and suggest that proNGF represents a new target to limit microvascular dysfunction.


Subject(s)
Brain/metabolism , Microvessels/pathology , Myocardial Infarction/metabolism , Nerve Growth Factor/metabolism , Pericytes/metabolism , Protein Precursors/metabolism , Reperfusion Injury/metabolism , Animals , Blotting, Western , DNA Primers/genetics , Echocardiography , Enzyme-Linked Immunosorbent Assay , Gene Knock-In Techniques , Humans , Immunohistochemistry , Mice , Microscopy, Electron , Microscopy, Fluorescence , Microvessels/metabolism , Mutagenesis, Site-Directed , Myocardial Infarction/pathology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/metabolism , Receptors, Nerve Growth Factor/deficiency , Receptors, Nerve Growth Factor/metabolism , Reperfusion Injury/pathology
18.
Auton Neurosci ; 164(1-2): 13-9, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21646052

ABSTRACT

Cardiac sympathetic neurons stimulate heart rate and the force of contraction through release of norepinephrine. Nerve growth factor modulates sympathetic transmission through activation of TrkA and p75NTR. Nerve growth factor plays an important role in post-infarct sympathetic remodeling. We used mice lacking p75NTR to examine the effect of altered nerve growth factor signaling on sympathetic neuropeptide expression, cardiac norepinephrine, and ventricular function after myocardial infarction. Infarct size was similar in wildtype and p75NTR-/- mice after ischemia-reperfusion surgery. Likewise, mRNAs encoding vasoactive intestinal peptide, galanin, and pituitary adenylate cyclase activating peptides were identical in wildtype and p75NTR-/- cardiac sympathetic neurons, as was expression of the TrkA neurotrophin receptor. Norepinephrine content was elevated in the base of the p75NTR-/- ventricle compared to wildtype, but levels were identical below the site of occlusion. Left ventricular pressure, dP/dt(MAX), and dP/dt(MIN) were measured under isoflurane anesthesia 3 and 7 days after surgery. Ventricular pressure decreased significantly 3 days after infarction, and deficits in dP/dt(MAX) were revealed by stimulating beta receptors with dobutamine and release of endogenous norepinephrine with tyramine. dP/dt(MIN) was not altered by genotype or surgical group. Few differences were observed between genotypes 3 days after surgery, in contrast to low pressure and dP/dt(MAX) previously reported in control p75NTR-/- animals. Seven days after surgery ventricular pressure and dP/dt(MAX) were significantly lower in p75NTR-/- hearts compared to WT hearts. Thus, the lack of p75NTR did not enhance cardiac function after myocardial infarction.


Subject(s)
Heart Ventricles/innervation , Heart Ventricles/physiopathology , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Norepinephrine/metabolism , Receptors, Nerve Growth Factor/physiology , Sympathetic Fibers, Postganglionic/physiopathology , Animals , Disease Models, Animal , Female , Heart Ventricles/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/genetics , Norepinephrine/biosynthesis , Norepinephrine/physiology , Receptors, Nerve Growth Factor/deficiency , Receptors, Nerve Growth Factor/genetics , Sympathetic Fibers, Postganglionic/metabolism , Up-Regulation/genetics
19.
Am J Physiol Heart Circ Physiol ; 298(6): H1652-60, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20190098

ABSTRACT

Sympathetic nerves stimulate cardiac function through the release of norepinephrine and the activation of cardiac beta(1)-adrenergic receptors. The sympathetic innervation of the heart is sculpted during development by chemoattractive factors including nerve growth factor (NGF) and the chemorepulsive factor semaphorin 3a. NGF acts through the TrkA receptor and the p75 neurotrophin receptor (p75(NTR)) in sympathetic neurons. NGF stimulates sympathetic axon extension into the heart through TrkA, but p75(NTR) modulates multiple coreceptors that can either stimulate or inhibit axon outgrowth. In mice lacking p75(NTR), the sympathetic innervation density in target tissues ranges from denervation to hyperinnervation. Recent studies have revealed significant changes in the sympathetic innervation density of p75NTR-deficient (p75(NTR-/-)) atria between early postnatal development and adulthood. We examined the innervation of adult p75(NTR-/-) ventricles and discovered that the subendocardium of the p75(NTR-/-) left ventricle was essentially devoid of sympathetic nerve fibers, whereas the innervation density of the subepicardium was normal. This phenotype is similar to that seen in mice overexpressing semaphorin 3a, and we found that sympathetic axons lacking p75(NTR) are more sensitive to semaphorin 3a in vitro than control neurons. The lack of subendocardial innervation was associated with decreased dP/dt, altered cardiac beta(1)-adrenergic receptor expression and sensitivity, and a significant increase in spontaneous ventricular arrhythmias. The lack of p75(NTR) also resulted in increased tyrosine hydroxylase content in cardiac sympathetic neurons and elevated norepinephrine in the right ventricle, where innervation density was normal.


Subject(s)
Arrhythmias, Cardiac/metabolism , Heart Ventricles/innervation , Receptors, Adrenergic, beta-1/metabolism , Receptors, Nerve Growth Factor/metabolism , Sympathetic Nervous System/growth & development , Ventricular Dysfunction/metabolism , Animals , Arrhythmias, Cardiac/physiopathology , Disease Models, Animal , Female , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Norepinephrine/metabolism , Receptor, trkA/metabolism , Receptors, Nerve Growth Factor/genetics , Semaphorin-3A/metabolism , Signal Transduction/physiology , Ventricular Dysfunction/physiopathology
20.
Auton Neurosci ; 140(1-2): 40-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18430612

ABSTRACT

Homeostatic regulation of cardiac function is dependent on the balance of inputs from the sympathetic and parasympathetic nervous systems. We investigated whether the p75 neurotrophin receptor plays a developmental role in cardiac innervation by analyzing sympathetic and parasympathetic fibers in the atria of p75 knockout and wildtype mice at several stages of postnatal development, and examining the effect on control of heart rate. We found that parasympathetic innervation of the atria in p75-/- mice was similar to wildtype at all time points, but that the density of sympathetic innervation was dynamically regulated. Compared to wildtype mice, the p75-/- mice had less innervation at postnatal day 4, an increase at day 28, and decreased innervation in adult mice. These changes reflect defects in initial fiber in-growth and the timing of the normal developmental decrease in sympathetic innervation density in the atria. Thus, p75 regulates both the growth and stability of cardiac sympathetic fibers. The distribution of sympathetic fibers was also altered, so that many regions lacked innervation. Basal heart rate was depressed in adult p75-/- mice, and these mice exhibited a diminished heart rate response to restraint stress. This resulted from the lack of sympathetic innervation rather than increased parasympathetic transmission or a direct effect of p75 in cardiac cells. Norepinephrine was elevated in p75-/- atria, but stimulating norepinephrine release with tyramine produced less tachycardia in p75-/- mice than wild type mice. This suggests that altered density and distribution of sympathetic fibers in p75-/- atria impairs the control of heart rate.


Subject(s)
Heart/innervation , Parasympathetic Nervous System/metabolism , Receptor, Nerve Growth Factor/metabolism , Sympathetic Nervous System/metabolism , Adrenergic Uptake Inhibitors/pharmacology , Aging/physiology , Animals , Cell Differentiation/physiology , Growth Cones/metabolism , Growth Cones/ultrastructure , Heart/growth & development , Heart/physiology , Heart Atria/growth & development , Heart Atria/innervation , Heart Rate/drug effects , Heart Rate/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Growth Factor/metabolism , Neurotrophin 3/metabolism , Norepinephrine/metabolism , Parasympathetic Nervous System/cytology , Parasympathetic Nervous System/growth & development , Presynaptic Terminals/metabolism , Receptor, Nerve Growth Factor/genetics , Stress, Psychological/genetics , Stress, Psychological/metabolism , Sympathetic Nervous System/cytology , Sympathetic Nervous System/growth & development , Synaptic Transmission/genetics , Tachycardia/chemically induced , Tachycardia/metabolism , Tachycardia/physiopathology , Tyramine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...