Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
ACS Omega ; 8(50): 47874-47882, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144060

ABSTRACT

Chromium-doped Ga2O3, with intense Cr3+-related red-infrared light emission, is a promising semiconductor material for optical sensors. This work constitutes a comprehensive study of the thermoluminescence properties of Cr-, Mg-codoped ß-Ga2O3 single crystals, both prior to and after proton irradiation. The thermoluminescence investigation includes a thorough analysis of measurements with different ß- irradiation doses used to populate the trap levels, with preheating steps to disentangle overlapping peaks (TM-TSTOP and initial rise methods) and finally by computationally fitting to a theoretical expression. At least three traps with activation energies of 0.84, 1.0, and 1.1 eV were detected. By comparison with literature reports, they can be assigned to different defect complexes involving oxygen vacancies and/or common contaminants/dopants. Interestingly, the thermoluminescence signal is enhanced by the proton irradiation while the type of traps is maintained. Finally, the pristine glow curve was recovered on the irradiated samples after an annealing step at 923 K for 10 s. These results contribute to a better understanding of the defect levels in Cr-, Mg-codoped ß-Ga2O3 and show that electrons released from these traps lead to Cr3+-related light emission that can be exploited in dosimetry applications.

3.
Phys Chem Chem Phys ; 24(42): 25773-25787, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36263762

ABSTRACT

350 nm and 550 nm thick InGaN/GaN bilayers were irradiated with different energies (from ∼82 to ∼38 MeV) of xenon (129Xe) ions and different fluences of 1.2 GeV lead (208Pb) ions, respectively. The radiation effects of the swift heavy ions' (SHIs) bombardment were investigated using Rutherford Backscattering Spectrometry in Channeling mode (RBS/C), X-Ray Diffraction (XRD), and micro-Raman spectroscopy. To assess damage profiles, the RBS/C analysis was followed by Monte Carlo simulations using the McChasy code, revealing that InGaN is more susceptible to irradiation damage than GaN. Moreover, the simulations suggest that both randomly displaced atoms (possibly due to partial amorphization) and dislocation loops are formed. The elastic response to radiation was estimated by measuring the expansion of the c-lattice parameter. XRD revealed the presence of strain even in low fluence samples where only a small fraction of the sample volume suffered direct SHI impacts. Micro-Raman suggests that for low defect concentrations, it is dominantly biaxial, while for high defect concentrations, the simultaneous increase of hydrostatic and biaxial occurs. As a driving force of the lattice expansion, we point out the Poisson effect resulting from the pressure exerted by the SHI tracks on the surrounding undamaged crystal structure.

4.
Small ; 18(49): e2102235, 2022 12.
Article in English | MEDLINE | ID: mdl-36310127

ABSTRACT

The widespread adoption of gGaN in radiation-hard semiconductor devices relies on a comprehensive understanding of its response to strongly ionizing radiation. Despite being widely acclaimed for its high radiation resistance, the exact effects induced by ionization are still hard to predict due to the complex phase-transition diagrams and defect creation-annihilation dynamics associated with group-III nitrides. Here, the Two-Temperature Model, Molecular Dynamics simulations and Transmission Electron Microscopy, are employed to study the interaction of Swift Heavy Ions with GaN at the atomic level. The simulations reveal a high propensity of GaN to recrystallize the region melted by the impinging ion leading to high thresholds for permanent track formation. Although the effect exists in all studied electronic energy loss regimes, its efficiency is reduced with increasing electronic energy loss, in particular when there is dissociation of the material and subsequent formation of N2 bubbles. The recrystallization is also hampered near the surface where voids and pits are prominent. The exceptional agreement between the simulated and experimental results establishes the applicability of the model to examine the entire electronic energy loss spectrum. Furthermore, the model supports an empirical relation between the interaction cross sections (namely for melting and amorphization) and the electronic energy loss.


Subject(s)
Electronics
5.
Sci Rep ; 12(1): 14584, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36028742

ABSTRACT

Finding suitable p-type dopants, as well as reliable doping and characterization methods for the emerging wide bandgap semiconductor [Formula: see text]-[Formula: see text] could strongly influence and contribute to the development of the next generation of power electronics. In this work, we combine easily accessible ion implantation, diffusion and nuclear transmutation methods to properly incorporate the Cd dopant into the [Formula: see text]-[Formula: see text] lattice, being subsequently characterized at the atomic scale with the Perturbed Angular Correlation (PAC) technique and Density Functional Theory (DFT) simulations. The acceptor character of Cd in [Formula: see text]-[Formula: see text] is demonstrated, with Cd sitting in the octahedral Ga site having a negative charge state, showing no evidence of polaron deformations nor extra point defects nearby. The possibility to determine the charge state of Cd will allow assessing the doping type, in particular proving p-type character, without the need for ohmic contacts. Furthermore, a possible approach for contactless charge mobility studies is demonstrated, revealing thermally activated free electrons for temperatures above [Formula: see text] 648 K with an activation energy of 0.54(1) and local electron transport dominated by a tunneling process between defect levels and the Cd probes at lower temperatures.

6.
Ann Surg Oncol ; 29(2): 1061-1070, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34647202

ABSTRACT

INTRODUCTION: Recent data suggest that margins ≥2 mm after breast-conserving surgery may improve local control in invasive breast cancer (BC). By allowing large resection volumes, oncoplastic breast-conserving surgery (OBCII; Clough level II/Tübingen 5-6) may achieve better local control than conventional breast conserving surgery (BCS; Tübingen 1-2) or oncoplastic breast conservation with low resection volumes (OBCI; Clough level I/Tübingen 3-4). METHODS: Data from consecutive high-risk BC patients treated in 15 centers from the Oncoplastic Breast Consortium (OPBC) network, between January 2010 and December 2013, were retrospectively reviewed. RESULTS: A total of 3,177 women were included, 30% of whom were treated with OBC (OBCI n = 663; OBCII n = 297). The BCS/OBCI group had significantly smaller tumors and smaller resection margins compared with OBCII (pT1: 50% vs. 37%, p = 0.002; proportion with margin <1 mm: 17% vs. 6%, p < 0.001). There were significantly more re-excisions due to R1 ("ink on tumor") in the BCS/OBCI compared with the OBCII group (11% vs. 7%, p = 0.049). Univariate and multivariable regression analysis adjusted for tumor biology, tumor size, radiotherapy, and systemic treatment demonstrated no differences in local, regional, or distant recurrence-free or overall survival between the two groups. CONCLUSIONS: Large resection volumes in oncoplastic surgery increases the distance from cancer cells to the margin of the specimen and reduces reexcision rates significantly. With OBCII larger tumors are resected with similar local, regional and distant recurrence-free as well as overall survival rates as BCS/OBCI.


Subject(s)
Breast Neoplasms , Mammaplasty , Breast Neoplasms/surgery , Female , Humans , Mastectomy, Segmental , Retrospective Studies , Treatment Outcome
7.
Materials (Basel) ; 14(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572165

ABSTRACT

Molybdenum oxide thin films were deposited on stiff and flexible substrates by reactive DC magnetron sputtering. Two sets of samples were prepared. The first with different O2/Ar flow rate ratios and the second, fixing the oxygen content, with different time of deposition. As the O2/Ar flow rate ratio varies from 0 up to 0.56, a threshold was found, ranging from crystalline to amorphous nature, and from a nontransparent appearance with metallic-like electrical conductivity to transparent and dielectric behaviour. From the second set, all transparent, the MoOx films present a compact/dense and featureless morphology with thickness from 190 up to 910 nm, depending on the time of deposition. Their structure was corroborated by XPS and Rutherford Backscattering Spectrometry (RBS) and density measurements were performed by RBS and X-ray reflectivity (XRR), revealing a value of 2.4 g/cm3. The surface roughness is in the order of a few nanometers and the maxima optical transmission, in the visible range, is around 89%. Electrochemical cyclic voltammograms showed noticeable color reversibility and reproducibility on the flexible substrates opening new framework possibilities for new electrochomic devices.

8.
Ecol Evol ; 8(21): 10520-10529, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30464824

ABSTRACT

AIM: To provide a method of analyzing penguin tracking data to identify priority at-sea areas for seabird conservation (marine IBAs), based on pre-existing approaches for flying seabirds but revised according to the specific ecology of Pygoscelis penguin species. LOCATION: Waters around the Antarctic Peninsula, South Shetland, and South Orkney archipelagos (FAO Subareas 48.1 and 48.2). METHODS: We made key improvements to the pre-existing protocol for identifying marine IBAs that include refining the track interpolation method and revision of parameters for the kernel analysis (smoothing factor and utilization distribution) using sensitivity tests. We applied the revised method to 24 datasets of tracking data on penguins (three species, seven colonies, and three different breeding stages-incubation, brood, and crèche). RESULTS: We identified five new marine IBAs for seabirds in the study area, estimated to hold ca. 600,000 adult penguins. MAIN CONCLUSIONS: The results demonstrate the efficacy of a new method for the designation of a network of marine IBAs in Antarctic waters for penguins based on tracking data, which can contribute to an evidence-based, precautionary, management framework for krill fisheries.

9.
Materials (Basel) ; 11(10)2018 Sep 22.
Article in English | MEDLINE | ID: mdl-30248983

ABSTRACT

Europium is the most-studied and least-well-understood rare earth ion (REI) dopant in GaN. While attempting to increase the efficiency of red GaN light-emitting diodes (LEDs) by implanting Eu⁺ into p-type GaN templates, the Strathclyde University group, in collaboration with IST Lisbon and Unipress Warsaw, discovered hysteretic photochromic switching (HPS) in the photoluminescence spectrum of doubly doped GaN(Mg):Eu. Our recent work, summarised in this contribution, has used time-, temperature- and light-induced changes in the Eu intra-4f shell emission spectrum to deduce the microscopic nature of the Mg-Eu defects that form in this material. As well as shedding light on the Mg acceptor in GaN, we propose a possible role for these emission centres in quantum information and computing.

10.
IEEE Int Conf Rehabil Robot ; 2017: 870-875, 2017 07.
Article in English | MEDLINE | ID: mdl-28813930

ABSTRACT

Motor relearning after stroke is a lengthy process which should be continued after patients get discharged from the clinic. This project aims at developing a system for telerehabilitation which enables stroke patients to exercise at home autonomously or under supervision of a therapist. The system includes haptic therapy devices which are more promising and beneficial for stroke rehabilitation than non-haptic approaches. In this paper, we present the results of two initial studies investigating specific design solutions for the patient's user interface. In the first study, we developed four interactive prototypes illustrating different navigation concepts. A usability test was conducted to identify the best suitable concept. In the second study we followed a participatory design approach to create a set of design solutions for a motivating instant visual feedback for exercising with the haptic devices. The current project status and next steps are described.


Subject(s)
Stroke Rehabilitation/methods , Telerehabilitation/methods , User-Computer Interface , Adult , Aged , Aged, 80 and over , Feedback, Sensory , Female , Humans , Male , Middle Aged , Robotics/instrumentation , Task Performance and Analysis
11.
Sci Rep ; 6: 28459, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27350322

ABSTRACT

The built-in piezoelectric fields in group III-nitrides can act as road blocks on the way to maximizing the efficiency of opto-electronic devices. In order to overcome this limitation, a proper characterization of these fields is necessary. In this work nano-beam electron diffraction in scanning transmission electron microscopy mode has been used to simultaneously measure the strain state and the induced piezoelectric fields in a GaN/AlN multiple quantum well system.

12.
Microsc Microanal ; 21(4): 994-1005, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26123063

ABSTRACT

We present a simple and robust method to acquire quantitative maps of compositional fluctuations in nanostructures from low magnification high-angle annular dark field (HAADF) micrographs calibrated by energy-dispersive X-ray (EDX) spectroscopy in scanning transmission electron microscopy (STEM) mode. We show that a nonuniform background in HAADF-STEM micrographs can be eliminated, to a first approximation, by use of a suitable analytic function. The uncertainty in probe position when collecting an EDX spectrum renders the calibration of HAADF-STEM micrographs indirect, and a statistical approach has been developed to determine the position with confidence. Our analysis procedure, presented in a flowchart to facilitate the successful implementation of the method by users, was applied to discontinuous InGaN/GaN quantum wells in order to obtain quantitative determinations of compositional fluctuations on the nanoscale.

13.
Sci Rep ; 5: 9703, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25853988

ABSTRACT

We studied the optical properties of metalorganic chemical vapour deposited (MOCVD) InGaN/GaN multiple quantum wells (MQW) subjected to nitrogen (N) implantation and post-growth annealing treatments. The optical characterization was carried out by means of temperature and excitation density-dependent steady state photoluminescence (PL) spectroscopy, supplemented by room temperature PL excitation (PLE) and PL lifetime (PLL) measurements. The as-grown and as-implanted samples were found to exhibit a single green emission band attributed to localized excitons in the QW, although the N implantation leads to a strong reduction of the PL intensity. The green band was found to be surprisingly stable on annealing up to 1400°C. A broad blue band dominates the low temperature PL after thermal annealing in both samples. This band is more intense for the implanted sample, suggesting that defects generated by N implantation, likely related to the diffusion/segregation of indium (In), have been optically activated by the thermal treatment.

14.
J Agric Food Chem ; 59(18): 10219-31, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21846099

ABSTRACT

Saliva flow induced by 6-gingerol (pungent), hydroxy-α/ß-sanshools (tingling), and citric acid (sour) was measured, and the time-dependent changes in the whole saliva proteome were analyzed by means of 2D-PAGE, followed by tryptic in-gel digestion and MALDI-TOF-MS peptide mass fingerprint analysis. The proteins showing significantly decreased abundance after oral 6-gingerol stimulation were identified as glutathione S-transferase P, the heat shock protein ß-1, the heat shock 70 kDa protein 1, annexin A1, and cytoplasmic ß-actin, whereas prolactin inducible proteins (PIP), short palate, lung and nasal epithelium carcinoma-associated protein 2 (SPLUNC2), zinc-α-2-glycoproteins (Zn-α-GP), and carbonic anhydrase VI (CAVI) were found with increased abundance. As the effects of this study were observed instantaneously upon stimulation, any proteome modulation is very likely to result from the release of proteins from preformed vesicles and not from de novo synthesis. The elevated levels of SPLUNC2, Zn-α-GP, and CAVI might be interpreted to trigger innate protective mechanisms in mucosal immunity and in nonimmune mucosal defense and might play an important role during the initial stage of inflammation.


Subject(s)
Saliva/chemistry , Salivary Proteins and Peptides/analysis , Salivation/physiology , Taste/physiology , Adult , Amides/pharmacology , Catechols/pharmacology , Citric Acid/pharmacology , Electrophoresis, Gel, Two-Dimensional , Fatty Alcohols/pharmacology , Female , Humans , Male , Salivation/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
Nanoscale Res Lett ; 6(1): 378, 2011 May 09.
Article in English | MEDLINE | ID: mdl-21711897

ABSTRACT

Undoped self-assembled GaN quantum dots (QD) stacked in superlattices (SL) with AlN spacer layers were submitted to thermal annealing treatments. Changes in the balance between the quantum confinement, strain state of the stacked heterostructures and quantum confined Stark effect lead to the observation of GaN QD excitonic recombination above and below the bulk GaN bandgap. In Eu-implanted SL structures, the GaN QD recombination was found to be dependent on the implantation fluence. For samples implanted with high fluence, a broad emission band at 2.7 eV was tentatively assigned to the emission of large blurred GaN QD present in the damage region of the implanted SL. This emission band is absent in the SL structures implanted with lower fluence and hence lower defect level. In both cases, high energy emission bands at approx. 3.9 eV suggest the presence of smaller dots for which the photoluminescence intensity was seen to be constant with increasing temperatures. Despite the fact that different deexcitation processes occur in undoped and Eu-implanted SL structures, the excitation population mechanisms were seen to be sample-independent. Two main absorption bands with maxima at approx. 4.1 and 4.7 to 4.9 eV are responsible for the population of the optically active centres in the SL samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...