Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Total Environ ; 817: 152977, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35016939

ABSTRACT

Rock weathering and pedogenesis are fundamental processes for element mobility in terrestrial bio-geochemical cycles and for the regulation of primary productivity in adjacent coastal marine ecosystems. Here, soils developed from volcanic ash under extreme climate conditions could play a particular role. We therefore investigated rock weathering, soil formation and the associated mobilization of trace elements and micronutrients in a pristine South Patagonian ecosystem. Weathered and unweathered basement lithologies, tephra of the 4.216 kyrs BP Mt. Burney eruption and four soil profiles are considered. The approach combines mineralogical (XRD, SEM) and inorganic geochemical (XRF, ICP-OES/MS) with organic geochemical analyses (TOC, TN, δ13C, δ15N, DOC extracts) of representative samples. Chemical weathering is quantified by mass balance calculations and 14C age constraints allow a correlation of pedogenic processes with the paleoenvironmental history of the area. Our data document that pedogenesis with initial peat formation occurred since ~2.5 kyrs BP. In these acidic peaty Andosols, intensive alteration of volcanic glass mobilized large quantities of elements, considerably surpassing leachates provided by basement rock weathering. Clay production is limited in favor of the formation of amorphous Al- and crystalline Fe-(hydr)oxides. However, tephra alteration, soil organic matter turnover rates, enhanced dissolved organic carbon export, and Fe-/Al-(hydr)oxide precipitation are closely linked and ultimately controlled by rainfall-induced water-level fluctuations, highlighting the dominant influence of the southern westerly wind belt. The transport of mobilized trace elements and micronutrients adsorbed onto suspended colloids (dissolved organic carbon, Al-humus complexes and Fe-(hydr)oxides) is redox-pH-dependent, highly variable and ultimately regulated by westerly intensity. Broader implications of this work include a new perspective on the climate-controlled micronutrient delivery for primary productivity in South Patagonian fjords, which is strongly affected by Andosol formation. Furthermore, a careful evaluation of 'ordinary' geochemical proxies in regional paleoenvironmental archives is needed to account for these unique pedogenic processes.


Subject(s)
Ecosystem , Soil , Climate , Soil/chemistry , Volcanic Eruptions , Weather
3.
Materials (Basel) ; 12(10)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091797

ABSTRACT

Clickable core-shell nanoparticles based on poly(styrene-co-divinylbenzene-co-vinylbenzylazide) have been synthesized via emulsion polymerization. The 38 nm sized particles have been swollen by divinyl benzene (DVB) and 2,2'-azobis(2-methylpropionitrile) (AIBN) and subsequently processed under high shear rates in a Z-shaped microchannel giving macroporous microclusters (100 µm), through the reactive gelation process. The obtained clusters were post-functionalized by "click-chemistry" with propargyl-PEG-NHS-ester and propargylglicidyl ether, yielding epoxide or NHS-ester activated polymer supports for bioconjugation. Macroporous affinity materials for antibody capturing were produced by immobilizing recombinant Staphylococcus aureus protein A on the polymeric support. Coupling chemistry exploiting thiol-epoxide ring-opening reactions with cysteine-containing protein A revealed up to three times higher binding capacities compared to the protein without cysteine. Despite the lower binding capacities compared to commercial affinity phases, the produced polymer-protein hybrids can serve as stationary phases for immunoglobulin affinity chromatography as the materials revealed superior intra-particle mass transports.

4.
Faraday Discuss ; 202: 315-330, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28671216

ABSTRACT

Cellulose nanocrystals (CNCs) are topical in materials science but their full potential is yet to be fulfilled because of bottlenecks in the production: the process consumes huge amounts of water, recycling the strong acid catalyst is difficult, and purification steps are cumbersome, particularly with lengthy dialysis. Production of CNCs with HCl vapour overcomes many of these difficulties but the dispersion of CNCs from the already hydrolysed fibre matrix is a formidable challenge. This study is a fundamental effort to explore very basic means to facilitate CNC dispersion from cotton linter fibres (filter paper), hydrolysed to levelling off degree of polymerization by HCl vapour. The introduction of carboxylic groups on the cellulose crystal surface proved the most efficient method to alleviate dispersion with good yields (ca. 50%) and a provisional possibility to tune the CNC length. By contrast, attempts to directly disperse untreated hydrolysed fibres in various organic solvents and aqueous surfactant solutions were unsuccessful. The results showed that hydrolysis of native cellulose fibres by HCl vapour is indeed a viable method for producing CNCs but it has more potential as a pre-treatment step rather than a full-fledged process on its own.


Subject(s)
Cellulose/isolation & purification , Hydrochloric Acid/chemistry , Nanoparticles/chemistry , Cellulose/chemistry , Particle Size , Surface Properties , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...