Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 126(1): 13-22, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22886355

ABSTRACT

Maize (Zea mays L.) breeders evaluate many single-cross hybrids each year in multiple environments. Our objective was to determine the usefulness of genomewide predictions, based on marker effects from maize single-cross data, for identifying the best untested single crosses and the best inbreds within a biparental cross. We considered 479 experimental maize single crosses between 59 Iowa Stiff Stalk Synthetic (BSSS) inbreds and 44 non-BSSS inbreds. The single crosses were evaluated in multilocation experiments from 2001 to 2009 and the BSSS and non-BSSS inbreds had genotypic data for 669 single nucleotide polymorphism (SNP) markers. Single-cross performance was predicted by a previous best linear unbiased prediction (BLUP) approach that utilized marker-based relatedness and information on relatives, and from genomewide marker effects calculated by ridge-regression BLUP (RR-BLUP). With BLUP, the mean prediction accuracy (r(MG)) of single-cross performance was 0.87 for grain yield, 0.90 for grain moisture, 0.69 for stalk lodging, and 0.84 for root lodging. The BLUP and RR-BLUP models did not lead to r(MG) values that differed significantly. We then used the RR-BLUP model, developed from single-cross data, to predict the performance of testcrosses within 14 biparental populations. The r(MG) values within each testcross population were generally low and were often negative. These results were obtained despite the above-average level of linkage disequilibrium, i.e., r(2) between adjacent markers of 0.35 in the BSSS inbreds and 0.26 in the non-BSSS inbreds. Overall, our results suggested that genomewide marker effects estimated from maize single crosses are not advantageous (cofmpared with BLUP) for predicting single-cross performance and have erratic usefulness for predicting testcross performance within a biparental cross.


Subject(s)
Genome-Wide Association Study , Zea mays/genetics , Chromosome Mapping/methods , Crosses, Genetic , Genes, Plant , Genetic Markers/genetics , Genetic Variation , Genome , Genome, Plant , Genotype , Models, Statistical , Polymorphism, Single Nucleotide , Regression Analysis , Reproducibility of Results
2.
Theor Appl Genet ; 120(1): 151-61, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19841887

ABSTRACT

The availability of cheap and abundant molecular markers has led to plant-breeding methods that rely on the prediction of genotypic value from marker data, but published information is lacking on the accuracy of genotypic value predictions with empirical data in plants. Our objectives were to (1) determine the accuracy of genotypic value predictions from multiple linear regression (MLR) and genomewide selection via best linear unbiased prediction (BLUP) in biparental plant populations; (2) assess the accuracy of predictions for different numbers of markers (N(M)) and progenies (N(P)) used in estimation; and (3) determine if an empirical Bayes approach for modeling of the variances of individual markers and of epistatic effects leads to more accurate predictions in empirical data. We divided each of four maize (Zea mays L.) datasets, one Arabidopsis dataset, and two barley (Hordeum vulgare L.) datasets into an estimation set, where marker effects were calculated, and a test set, where genotypic values were predicted based on markers. Predictions were more accurate with BLUP than with MLR. Predictions became more accurate as N(P) and N(M) increased, until sufficient genome coverage was reached. Modeling marker variances with the empirical Bayes method sometimes led to slightly better predictions, but the accuracy with different variants of the empirical Bayes method was often inconsistent. In nearly all cases, the accuracy with BLUP was not significantly different from the highest accuracy across all methods. Accounting for epistasis in the empirical Bayes procedure led to poorer predictions. We concluded that among the methods considered, the quick and simple BLUP approach is the method of choice for predicting genotypic value in biparental plant populations.


Subject(s)
Arabidopsis/genetics , Breeding , Genetic Markers , Genotype , Hordeum/genetics , Selection, Genetic , Zea mays/genetics , Crosses, Genetic , Epistasis, Genetic , Genome, Plant , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...