Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2403572, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004852

ABSTRACT

Achieving the goal of generating all of the world's energy via renewable sources and significantly reducing the energy usage will require the development of novel, abundant, nontoxic energy conversion materials. Here, a cost-efficient and scalable continuous flow synthesis of Cs3Cu2I5 nanocrystals is developed as a basis for the rapid advancement of novel nanomaterials. Ideal precursor solutions are obtained through a novel batch synthesis, whose product served as a benchmark for the subsequent flow synthesis. Realizing this setup enabled a reproducible fabrication of Cs3Cu2I5 nanocrystals. The effect of volumetric flow rate and temperature on the final product's morphology and optical properties are determined, obtaining 21% quantum yield with the optimal configuration. Consequently, the size and morphology of the nanocrystals can be tuned with far more precision and in a much broader range than previously achievable. The flow setup is readily applicable to other relevant nanomaterials. It should enable a rapid determination of a material's potential and subsequently optimize its desired properties for renewable energy generation or efficient optoelectronics.

2.
Sci Rep ; 14(1): 1320, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225247

ABSTRACT

We report the precise measurement of electric fields in nanostructures, and high-contrast imaging of soft matter at ultralow electron doses by transmission electron microscopy (TEM). In particular, a versatile method based on the theorem of reciprocity is introduced to enable differential phase contrast imaging and ptychography in conventional, plane-wave illumination TEM. This is realised by a series of TEM images acquired under different tilts, thereby introducing the sampling rate in reciprocal space as a tuneable parameter, in contrast to momentum-resolved scanning techniques. First, the electric field of a p-n junction in GaAs is imaged. Second, low-dose, in-focus ptychographic and DPC characterisation of Kagome pores in weakly scattering covalent organic frameworks is demonstrated by using a precessing electron beam in combination with a direct electron detector. The approach offers utmost flexibility to record relevant spatial frequencies selectively, while acquisition times and dose requirements are significantly reduced compared to the 4D-STEM counterpart.

SELECTION OF CITATIONS
SEARCH DETAIL
...