Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Build Environ ; 221: 109282, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35965917

ABSTRACT

Adapting building operation during the COVID-19 pandemic to improve indoor air quality (IAQ) while ensuring sustainable solutions in terms of costs and CO2 emissions is challenging and limited in literature. Our previous study investigated different HVAC operation strategies, including increased filtration using MERV 10, MERV 13, or HEPA filters, as well as supplying 100% outdoor air into buildings for a system initially sized for MERV 10 filtration. This paper significantly extends that research by systematically analyzing the potential financial and environmental impact for different locations in the U.S. The previous medium office building system model is improved to account for operation in different climates. New evaluation metrics are created to consider the comprehensive impact of improving IAQ on costs and CO2 emissions, using dynamic emission factors for electricity generation depending on the location. HVAC operation strategies are studied in five different locations across the United States, with distinct climates and electricity sources. In four of the five locations, MERV 13 filtration offers the best improvement in IAQ per increase in costs and emissions relative to MERV 10. The exception is the mildest climate of San Diego, where use of 100% outdoor air provides the best IAQ with a limited increase in costs and emissions. A system not sized for HEPA filtration can lead to increased costs and emissions without much improvement in IAQ.

2.
Build Environ ; 207: 108441, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34720357

ABSTRACT

The COVID-19 pandemic has highlighted the need for strategies that mitigate the risk of aerosol disease transmission in indoor environments with different ventilation strategies. It is necessary for building operators to be able to estimate and compare the relative impacts of different mitigation strategies to determine suitable strategies for a particular situation. Using a validated CFD model, this study simulates the dispersion of exhaled contaminants in a thermally stratified conference room with overhead heating. The impacts of portable air-cleaners (PACs) on the room airflow and contaminant distribution were evaluated for different PAC locations and flow rates, as well as for different room setups (socially distanced or fully occupied). To obtain a holistic view of a strategy's impacts under different release scenarios, we simultaneously model the steady-state distribution of aerosolized virus contaminants from eight distinct sources in 18 cases for a total of 144 release scenarios. The simulations show that the location of the source, the PAC settings, and the room set-up can impact the average exposure and PAC effectiveness. For this studied case, the PACs reduced the room average exposure by 31%-66% relative to the baseline case. Some occupant locations were shown to have a higher-than-average exposure, particularly those seated near the airflow outlet, and occupants closest to sources tended to see the highest exposure from said source. We found that these PACs were effective at reducing the stratification caused by overhead heating, and also identified at least one sub-optimal location for placing a PAC in this space.

3.
Build Environ ; 207: 108519, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34785853

ABSTRACT

To minimize the indoor transmission of contaminants, such as the virus that can lead to COVID-19, buildings must provide the best indoor air quality possible. Improving indoor air quality can be achieved through the building's HVAC system to decrease any concentration of indoor contaminants by dilution and/or by source removal. However, doing so has practical downsides on the HVAC operation that are not always quantified in the literature. This paper develops a temporal simulation capability that is used to investigate the indoor virus concentration and operational cost of an HVAC system for two mitigation strategies: (1) supplying 100% outdoor air into the building and (2) using different HVAC filters, including MERV 10, MERV 13, and HEPA filters. These strategies are applied to a hypothetical medium office building consisting of five occupied zones and located in a cold and dry climate. We modeled the building using the Modelica Buildings library and developed new models for HVAC filtration and virus transmission to evaluate COVID-19 scenarios. We show that the ASHRAE-recommended MERV 13 filtration reduces the average virus concentration by about 10% when compared to MERV 10 filtration, with an increase in site energy consumption of about 3%. In contrast, the use of 100% outdoor air reduces the average indoor concentration by about an additional 1% compared to MERV 13 filtration, but significantly increases heating energy consumption. Use of HEPA filtration increases the average indoor concentration and energy consumption compared to MERV 13 filtration due to the high resistance of the HEPA filter.

4.
Risk Anal ; 32(12): 2032-42, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22551059

ABSTRACT

We present a probabilistic approach to designing an indoor sampler network for detecting an accidental or intentional chemical or biological release, and demonstrate it for a real building. In an earlier article, Sohn and Lorenzetti developed a proof of concept algorithm that assumed samplers could return measurements only slowly (on the order of hours). This led to optimal "detect to treat" architectures that maximize the probability of detecting a release. This article develops a more general approach and applies it to samplers that can return measurements relatively quickly (in minutes). This leads to optimal "detect to warn" architectures that minimize the expected time to detection. Using a model of a real, large, commercial building, we demonstrate the approach by optimizing networks against uncertain release locations, source terms, and sampler characteristics. Finally, we speculate on rules of thumb for general sampler placement.

5.
Environ Sci Technol ; 45(23): 10091-5, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21958230

ABSTRACT

The Polanyi-Dubinin-Radushkevich isotherm has proven useful for modeling the adsorption of volatile organic compounds on microporous materials such as activated carbon. When embedded in a larger dynamic simulation--e.g., of whole-building pollutant transport--it is important to solve the sorption relations as quickly as possible. This work compares numerical methods for solving the Polanyi-DR model, in cases where transport to the surface is assumed linear in the bulk-to-surface concentration differences. We focus on developing numerically stable algorithms that converge across a wide range of inputs, including zero concentrations, where the isotherm is undefined. We identify several methods, including a modified Newton-Raphson search, that solve the system 3-4 times faster than simple bisection. Finally, we present a rule of thumb for identifying when boundary-layer diffusion limits the transport rate enough to justify reducing the model complexity.


Subject(s)
Models, Theoretical , Adsorption , Air Pollutants/chemistry , Algorithms , Molecular Dynamics Simulation
6.
Risk Anal ; 27(4): 877-86, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17958498

ABSTRACT

We describe a probabilistic approach to siting samplers for detecting accidental or intentional releases of biological material. In the face of uncertainty and variability in the release conditions, we place samplers in order to maximize the probability of detecting a release from among a suite of realistic scenarios. The scenarios may differ in any unknown, for example, the release size or location, weather, mode of building operation, etc. In an illustrative example, we apply the algorithm to a hypothetical 24-room commercial building, finding optimal networks for a variety of assumed sampler types. The results show how sampler characteristics, most importantly the detection limit, affect the network performance. This suggests using the probabilistic approach to guide the priorities of sampler designers, as well as to site samplers in specific buildings.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Algorithms , Biological Warfare , Bioterrorism , Environmental Monitoring/instrumentation , Probability
SELECTION OF CITATIONS
SEARCH DETAIL
...