Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Physiol ; 155(9)2023 09 04.
Article in English | MEDLINE | ID: mdl-37516919

ABSTRACT

Posttranslational regulation of cardiac NaV1.5 channels is critical in modulating channel expression and function, yet their regulation by phosphorylation of accessory proteins has gone largely unexplored. Using phosphoproteomic analysis of NaV channel complexes from adult mouse left ventricles, we identified nine phosphorylation sites on intracellular fibroblast growth factor 13 (iFGF13). To explore the potential roles of these phosphosites in regulating cardiac NaV currents, we abolished expression of iFGF13 in neonatal and adult mouse ventricular myocytes and rescued it with wild-type (WT), phosphosilent, or phosphomimetic iFGF13-VY. While the increased rate of closed-state inactivation of NaV channels induced by Fgf13 knockout in adult cardiomyocytes was completely restored by adenoviral-mediated expression of WT iFGF13-VY, only partial rescue was observed in neonatal cardiomyocytes after knockdown. The knockdown of iFGF13 in neonatal ventricular myocytes also shifted the voltage dependence of channel activation toward hyperpolarized potentials, a shift that was not reversed by WT iFGF13-VY expression. Additionally, we found that iFGF13-VY is the predominant isoform in adult ventricular myocytes, whereas both iFGF13-VY and iFGF13-S are expressed comparably in neonatal ventricular myocytes. Similar to WT iFGF13-VY, each of the iFGF13-VY phosphomutants studied restored NaV channel inactivation properties in both models. Lastly, Fgf13 knockout also increased the late Na+ current in adult cardiomyocytes, and this effect was restored with expression of WT and phosphosilent iFGF13-VY. Together, our results demonstrate that iFGF13 is highly phosphorylated and displays differential isoform expression in neonatal and adult ventricular myocytes. While we found no roles for iFGF13 phosphorylation, our results demonstrate differential effects of iFGF13 on neonatal and adult mouse ventricular NaV channels.


Subject(s)
Myocardium , Myocytes, Cardiac , Animals , Mice , Fibroblast Growth Factors , Adenoviridae
2.
IUBMB Life ; 75(9): 717-731, 2023 09.
Article in English | MEDLINE | ID: mdl-36988388

ABSTRACT

Inhibition of the mammalian target of rapamycin (mTOR) with the macrolide rapamycin or pharmacological suppression of KATP channel opening translated to scar expansion of the myocardial infarcted (MI) adult female rodent heart. The present study tested the hypotheses that rapamycin-mediated scar expansion was sex-specific and that mTOR signaling directly influenced KATP channel subunit expression/activity. Scar size was significantly larger in post-MI male rats as compared to the previous data reported in post-MI female rats. The reported scar expansion of rapamycin-treated post-MI female rats was not observed following the administration of the macrolide to post-MI male rats. Protein levels of the KATP channel subunits Kir6.2 and SUR2A and phosphorylation of the serine2448 residue of mTOR were similar in the normal heart of adult male and female rats. By contrast, greater tuberin inactivation characterized by the increased phosphorylation of the threonine1462 residue and reduced raptor protein levels were identified in the normal heart of adult female rats. Rapamycin pretreatment of phorbol 12,13-dibutyrate (PDBu)-treated neonatal rat ventricular cardiomyocytes (NNVMs) suppressed hypertrophy, inhibited p70S6K phosphorylation, and attenuated SUR2A protein upregulation. In the presence of low ATP levels, KATP channel activity detected in untreated NNVMs was significantly attenuated in PDBu-induced hypertrophied NNVMs via a rapamycin-independent pathway. Thus, rapamycin administration to post-MI rats unmasked a sex-specific pattern of scar expansion and mTOR signaling in PDBu-induced hypertrophied NNVMs significantly increased SUR2A protein levels. However, the biological advantage associated with SUR2A protein upregulation was partially offset by an mTOR-independent pathway that attenuated KATP channel activity in PDBu-induced hypertrophied NNVMs.


Subject(s)
Myocardial Infarction , Sirolimus , Female , Male , Animals , Rats , Sirolimus/pharmacology , Cicatrix , TOR Serine-Threonine Kinases/genetics , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , Macrolides , Anti-Bacterial Agents , Adenosine Triphosphate , Mammals
3.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778222

ABSTRACT

Phosphorylation of the cardiac Na V 1.5 channel pore-forming subunit is extensive and critical in modulating channel expression and function, yet the regulation of Na V 1.5 by phosphorylation of its accessory proteins remains elusive. Using a phosphoproteomic analysis of Na V channel complexes purified from mouse left ventricles, we identified nine phosphorylation sites on Fibroblast growth factor Homologous Factor 2 (FHF2). To determine the roles of phosphosites in regulating Na V 1.5, we developed two models from neonatal and adult mouse ventricular cardiomyocytes in which FHF2 expression is knockdown and rescued by WT, phosphosilent or phosphomimetic FHF2-VY. While the increased rates of closed-state and open-state inactivation of Na V channels induced by the FHF2 knockdown are completely restored by the FHF2-VY isoform in adult cardiomyocytes, sole a partial rescue is obtained in neonatal cardiomyocytes. The FHF2 knockdown also shifts the voltage-dependence of activation towards hyperpolarized potentials in neonatal cardiomyocytes, which is not rescued by FHF2-VY. Parallel investigations showed that the FHF2-VY isoform is predominant in adult cardiomyocytes, while expression of FHF2-VY and FHF2-A is comparable in neonatal cardiomyocytes. Similar to WT FHF2-VY, however, each FHF2-VY phosphomutant restores the Na V channel inactivation properties in both models, preventing identification of FHF2 phosphosite roles. FHF2 knockdown also increases the late Na + current in adult cardiomyocytes, which is restored similarly by WT and phosphosilent FHF2-VY. Together, our results demonstrate that ventricular FHF2 is highly phosphorylated, implicate differential roles for FHF2 in regulating neonatal and adult mouse ventricular Na V 1.5, and suggest that the regulation of Na V 1.5 by FHF2 phosphorylation is highly complex. eTOC Summary: Lesage et al . identify the phosphorylation sites of FHF2 from mouse left ventricular Na V 1.5 channel complexes. While no roles for FHF2 phosphosites could be recognized yet, the findings demonstrate differential FHF2-dependent regulation of neonatal and adult mouse ventricular Na V 1.5 channels.

4.
Sci Rep ; 11(1): 3282, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558601

ABSTRACT

The patch-clamp technique and more recently the high throughput patch-clamp technique have contributed to major advances in the characterization of ion channels. However, the whole-cell voltage-clamp technique presents certain limits that need to be considered for robust data generation. One major caveat is that increasing current amplitude profoundly impacts the accuracy of the biophysical analyses of macroscopic ion currents under study. Using mathematical kinetic models of a cardiac voltage-gated sodium channel and a cardiac voltage-gated potassium channel, we demonstrated how large current amplitude and series resistance artefacts induce an undetected alteration in the actual membrane potential and affect the characterization of voltage-dependent activation and inactivation processes. We also computed how dose-response curves are hindered by high current amplitudes. This is of high interest since stable cell lines frequently demonstrating high current amplitudes are used for safety pharmacology using the high throughput patch-clamp technique. It is therefore critical to set experimental limits for current amplitude recordings to prevent inaccuracy in the characterization of channel properties or drug activity, such limits being different from one channel type to another. Based on the predictions generated by the kinetic models, we draw simple guidelines for good practice of whole-cell voltage-clamp recordings.


Subject(s)
Ion Channels/metabolism , Membrane Potentials , Models, Biological , Myocytes, Cardiac/metabolism , Animals , Cells, Cultured , Mice , Patch-Clamp Techniques
5.
J Gen Physiol ; 153(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33410863

ABSTRACT

Phosphorylation of the voltage-gated Na+ (NaV) channel NaV1.5 regulates cardiac excitability, yet the phosphorylation sites regulating its function and the underlying mechanisms remain largely unknown. Using a systematic, quantitative phosphoproteomic approach, we analyzed NaV1.5 channel complexes purified from nonfailing and failing mouse left ventricles, and we identified 42 phosphorylation sites on NaV1.5. Most sites are clustered, and three of these clusters are highly phosphorylated. Analyses of phosphosilent and phosphomimetic NaV1.5 mutants revealed the roles of three phosphosites in regulating NaV1.5 channel expression and gating. The phosphorylated serines S664 and S667 regulate the voltage dependence of channel activation in a cumulative manner, whereas the nearby S671, the phosphorylation of which is increased in failing hearts, regulates cell surface NaV1.5 expression and peak Na+ current. No additional roles could be assigned to the other clusters of phosphosites. Taken together, our results demonstrate that ventricular NaV1.5 is highly phosphorylated and that the phosphorylation-dependent regulation of NaV1.5 channels is highly complex, site specific, and dynamic.


Subject(s)
Heart Ventricles , Proteomics , Animals , Heart Ventricles/metabolism , Mice , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Phosphorylation , Serine , Sodium/metabolism
6.
J Biol Chem ; 292(42): 17431-17448, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28882890

ABSTRACT

Voltage-gated Na+ (NaV) channels are key regulators of myocardial excitability, and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent alterations in NaV1.5 channel inactivation are emerging as a critical determinant of arrhythmias in heart failure. However, the global native phosphorylation pattern of NaV1.5 subunits associated with these arrhythmogenic disorders and the associated channel regulatory defects remain unknown. Here, we undertook phosphoproteomic analyses to identify and quantify in situ the phosphorylation sites in the NaV1.5 proteins purified from adult WT and failing CaMKIIδc-overexpressing (CaMKIIδc-Tg) mouse ventricles. Of 19 native NaV1.5 phosphorylation sites identified, two C-terminal phosphoserines at positions 1938 and 1989 showed increased phosphorylation in the CaMKIIδc-Tg compared with the WT ventricles. We then tested the hypothesis that phosphorylation at these two sites impairs fibroblast growth factor 13 (FGF13)-dependent regulation of NaV1.5 channel inactivation. Whole-cell voltage-clamp analyses in HEK293 cells demonstrated that FGF13 increases NaV1.5 channel availability and decreases late Na+ current, two effects that were abrogated with NaV1.5 mutants mimicking phosphorylation at both sites. Additional co-immunoprecipitation experiments revealed that FGF13 potentiates the binding of calmodulin to NaV1.5 and that phosphomimetic mutations at both sites decrease the interaction of FGF13 and, consequently, of calmodulin with NaV1.5. Together, we have identified two novel native phosphorylation sites in the C terminus of NaV1.5 that impair FGF13-dependent regulation of channel inactivation and may contribute to CaMKIIδc-dependent arrhythmogenic disorders in failing hearts.


Subject(s)
Fibroblast Growth Factors/metabolism , Heart Failure/metabolism , Ion Channel Gating , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Amino Acid Substitution , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Fibroblast Growth Factors/genetics , HEK293 Cells , Heart Failure/genetics , Humans , Mice , Mice, Transgenic , Mutation, Missense , NAV1.5 Voltage-Gated Sodium Channel/genetics , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...