Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 239(4): 1521-1532, 2023 08.
Article in English | MEDLINE | ID: mdl-37306056

ABSTRACT

A major advantage of using CRISPR/Cas9 for gene editing is multiplexing, that is, the simultaneous targeting of many genes. However, primary transformants typically contain hetero-allelic mutations or are genetic mosaic, while genetically stable lines that are homozygous are desired for functional analysis. Currently, a dedicated and labor-intensive effort is required to obtain such higher-order mutants through several generations of genetic crosses and genotyping. We describe the design and validation of a rapid and efficient strategy to produce lines of genetically identical plants carrying various combinations of homozygous edits, suitable for replicated analysis of phenotypical differences. This approach was achieved by combining highly multiplex gene editing in Zea mays (maize) with in vivo haploid induction and efficient in vitro generation of doubled haploid plants using embryo rescue doubling. By combining three CRISPR/Cas9 constructs that target in total 36 genes potentially involved in leaf growth, we generated an array of homozygous lines with various combinations of edits within three generations. Several genotypes show a reproducible 10% increase in leaf size, including a septuple mutant combination. We anticipate that our strategy will facilitate the study of gene families via multiplex CRISPR mutagenesis and the identification of allele combinations to improve quantitative crop traits.


Subject(s)
Gene Editing , Zea mays , Zea mays/genetics , CRISPR-Cas Systems/genetics , Genome, Plant , Haploidy , Plants, Genetically Modified
2.
Plant Reprod ; 2023 May 03.
Article in English | MEDLINE | ID: mdl-37133696

ABSTRACT

KEY MESSAGE: MsTFL1A is an important gene involved in flowering repression in alfalfa (Medicago sativa) which conditions not only above-ground plant shoot architecture but also root development and growth. Delayed flowering is an important trait for forage species, as it allows harvesting of high-quality forage for a longer time before nutritional values decline due to plant architecture changes related to flowering onset. Despite the relevance of delayed flowering, this trait has not yet been thoroughly exploited in alfalfa. This is mainly due to its complex genetics, sensitivity to inbreeding and to the fact that delayed flowering would be only advantageous if it allowed increased forage quality without compromising seed production. To develop new delayed-flowering varieties, we have characterized the three TERMINAL FLOWERING 1 (TFL1) family of genes in alfalfa: MsTFL1A, MsTFL1B and MsTFL1C. Constitutive expression of MsTFL1A in Arabidopsis caused late flowering and changes in inflorescence architecture, indicating that MsTFL1A is the ortholog of Arabidopsis TFL1. Overexpression of MsTFL1A in alfalfa consistently led to delayed flowering in both controlled and natural field conditions, coupled to an increase in leaf/stem ratio, a common indicator of forage quality. Additionally, overexpression of MsTFL1A reduced root development, reinforcing the role of MsTFL1A not only as a flowering repressor but also as a regulator of root development.We conclude that the precise manipulation of MsTFL1A gene expression may represent a powerful tool to improve alfalfa forage quality.

3.
Plant Biotechnol J ; 18(4): 944-954, 2020 04.
Article in English | MEDLINE | ID: mdl-31536663

ABSTRACT

Alfalfa (Medicago sativa L.) is one of the most important forage crops worldwide. As a perennial, alfalfa is cut several times each year. Farmers face a dilemma: if cut earlier, forage nutritive value is much higher but regrowth is affected and the longevity of the stand is severely compromised. On the other hand, if alfalfa is cut later at full flower, stands persist longer and more biomass may be harvested, but the nutritive value diminishes. Alfalfa is a strict long-day plant. We reasoned that by manipulating the response to photoperiod, we could delay flowering to improve forage quality and widen each harvesting window, facilitating management. With this aim, we functionally characterized the FLOWERING LOCUS T family of genes, represented by five members: MsFTa1, MsFTa2, MsFTb1, MsFTb2 and MsFTc. The expression of MsFTa1 correlated with photoperiodic flowering and its down-regulation led to severe delayed flowering. Altogether, with late flowering, low expression of MsFTa1 led to changes in plant architecture resulting in increased leaf to stem biomass ratios and forage digestibility. By manipulating photoperiodic flowering, we were able to improve the quality of alfalfa forage and management, which may allow farmers to cut alfalfa of high nutritive value without compromising stand persistence.


Subject(s)
Gene Expression Regulation, Plant , Medicago sativa/genetics , Nutritive Value , Plant Proteins/genetics , Biomass , Down-Regulation , Flowers/physiology , Medicago sativa/chemistry , Photoperiod
4.
Plant J ; 99(1): 7-22, 2019 07.
Article in English | MEDLINE | ID: mdl-30924988

ABSTRACT

Shade-intolerant plants respond to the decrease in the red (R) to far-red (FR) light ratio (R:FR) occurring under shade by elongating stems and petioles and by re-positioning leaves, in a race to outcompete neighbors for the sunlight resource. In some annual species, the shade avoidance syndrome (SAS) is accompanied by the early induction of flowering. Anticipated flowering is viewed as a strategy to set seeds before the resources become severely limiting. Little is known about the molecular mechanisms of SAS in perennial forage crops like alfalfa (Medicago sativa). To study SAS in alfalfa, we exposed alfalfa plants to simulated shade by supplementing with FR light. Low R:FR light produced a classical SAS, with increased internode and petiole lengths, but unexpectedly also with delayed flowering. To understand the molecular mechanisms involved in uncoupling SAS from early flowering, we used a transcriptomic approach. The SAS is likely to be mediated by increased expression of msPIF3 and msHB2 in low R:FR light. Constitutive expression of these genes in Arabidopsis led to SAS, including early flowering, strongly suggesting that their roles are conserved. Delayed flowering was likely to be mediated by the downregulation of msSPL3, which promotes flowering in both Arabidopsis and alfalfa. Shade-delayed flowering in alfalfa may be important to extend the vegetative phase under suboptimal light conditions, and thus assure the accumulation of reserves necessary to resume growth after the next season.


Subject(s)
Flowers/physiology , Light , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant , Medicago sativa/metabolism , Medicago sativa/physiology
5.
PLoS Genet ; 12(11): e1006413, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27820825

ABSTRACT

Plants have developed sophisticated systems to monitor and rapidly acclimate to environmental fluctuations. Light is an essential source of environmental information throughout the plant's life cycle. The model plant Arabidopsis thaliana possesses five phytochromes (phyA-phyE) with important roles in germination, seedling establishment, shade avoidance, and flowering. However, our understanding of the phytochrome signaling network is incomplete, and little is known about the individual roles of phytochromes and how they function cooperatively to mediate light responses. Here, we used a bottom-up approach to study the phytochrome network. We added each of the five phytochromes to a phytochrome-less background to study their individual roles and then added the phytochromes by pairs to study their interactions. By analyzing the 16 resulting genotypes, we revealed unique roles for each phytochrome and identified novel phytochrome interactions that regulate germination and the onset of flowering. Furthermore, we found that ambient temperature has both phytochrome-dependent and -independent effects, suggesting that multiple pathways integrate temperature and light signaling. Surprisingly, none of the phytochromes alone conferred a photoperiodic response. Although phyE and phyB were the strongest repressors of flowering, both phyB and phyC were needed to confer a flowering response to photoperiod. Thus, a specific combination of phytochromes is required to detect changes in photoperiod, whereas single phytochromes are sufficient to respond to light quality, indicating how phytochromes signal different light cues.


Subject(s)
Apoproteins/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Phytochrome B/genetics , Phytochrome/genetics , Apoproteins/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Genotype , Germination/genetics , Light , Phytochrome/metabolism , Phytochrome A , Phytochrome B/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Seedlings/genetics , Seedlings/growth & development , Signal Transduction/genetics , Temperature
6.
Photochem Photobiol ; 92(1): 3-13, 2016.
Article in English | MEDLINE | ID: mdl-26439979

ABSTRACT

Due to their nature as sessile organisms, plants must accurately sense their surroundings and then translate this information into efficient acclimation responses to maximize development. Light and temperature are two major stimuli that provide immediate cues regarding energy availability, daylength, proximity of other species and seasonal changes. Both cues are sensed by complex systems and the integration of these signals is of very high value to properly respond to environmental changes without being disguised by random changes. For instance a cold day has a different significance if it occurs during the illuminated phase of the day or during the night, or when days are shortening during the fall instead of a long-day in spring. Here, we summarize recent advances in the nature of signaling components that operate as connectors of light and temperature signaling, with emphasis on the emerging hubs. Despite the nature of the thermosensors is still in its infancy compared to an important body of knowledge about plant sensory photoreceptors, the interaction of both types of signaling will not only bring clues of how plants integrate environmental information, but also will help in leading research in the nature of the thermosensors themselves.

SELECTION OF CITATIONS
SEARCH DETAIL
...