Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 240: 123196, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34998145

ABSTRACT

Characterization of extracellular matrix (ECM) is becoming more and more important to decipher cancer progression. Constant remodeling results in ECM components degradation or unusual ECM accumulation that releases short fragments to the body fluids. These fragments might be potential cancer biomarkers but to detect them specific receptors are needed. In response to this demand, we present the first electrochemical aptamer-based competitive assay for the minor collagen XI, dysregulated in several carcinomas. It was performed on magnetic beads using enzymatic labeling. First, we selected the most appropriate tag for the aptamer (biotin or 6-carboxyfluorescein). The former yielded higher currents by chronoamperometry and it was used for the competitive assay. The collagen fragment, a 16mer peptide used as the target, was detected from 52 to 1000 nM with an RSD of about 5%. The LOD of the assay was estimated as 24 nM (44 ng/mL). The performance of the assay in serum diluted 1:2 was equivalent to the assay in PBS. The detection of α1 chain of human collagen XI was also possible in cell lysates and confirmed by aptacytofluorescence, which is promising as a new tool to validate this fragment as a cancer biomarker.


Subject(s)
Collagen , Neoplasms , Biomarkers, Tumor , Extracellular Matrix , Humans , Peptides
2.
Anal Bioanal Chem ; 414(1): 147-165, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34091712

ABSTRACT

The role of the extracellular matrix (ECM) remodeling in tumorigenesis and metastasis is becoming increasingly clear. Cancer development requires that tumor cells recruit a tumor microenvironment permissive for further tumor growth. This is a dynamic process that takes place by a cross-talk between tumor cells and ECM. As a consequence, molecules derived from the ECM changes associated to cancer are released into the bloodstream, representing potential biomarkers of tumor development. This article highlights the importance of developing and improving bioanalytical methods for the detection of ECM remodeling-derived components, as a step forward to translate the basic knowledge about cancer progression into the clinical practice.


Subject(s)
Biomarkers, Tumor , Extracellular Matrix Proteins/chemistry , Neoplasms/diagnosis , Extracellular Matrix Proteins/metabolism , Humans , Protein Conformation
3.
Anal Chim Acta ; 1189: 339206, 2022 Jan 02.
Article in English | MEDLINE | ID: mdl-34815029

ABSTRACT

The extracellular matrix (ECM) plays an essential role in tumor progression and invasion through its continuous remodeling. The growth of most carcinomas is associated with an excessive collagen deposition that provides the proper environment for tumor development and chemoresistance. The α1 chain of a minor human collagen, type XI, is overexpressed in some tumor stroma, but not found in normal stroma. To test the clinical utility of this collagen as a cancer biomarker, specific receptors are needed. Available antibodies do not show enough selectivity or are directed toward the propeptide region that is cleaved when the protein is released to the ECM. Here we show the selection of an aptamer for the specific C-telopeptide region using a 16-mer peptide as the target for the SELEX. The aptamer selected with a Kd of ∼25 nM was able to capture the collagen XI from cell lysates. It was also used for target detection in a mixed antibody-aptamer sandwich assay showing it can be useful for diagnostic purposes in biological fluids.


Subject(s)
Aptamers, Nucleotide , Collagen Type XI/analysis , Neoplasms , Biomarkers, Tumor , Extracellular Matrix , Humans , Neoplasms/diagnosis
4.
Anal Chim Acta ; 1124: 1-19, 2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32534661

ABSTRACT

The tunability of SELEX procedure is an essential feature to supply bioaffinity receptors (aptamers) almost on demand for analytical and therapeutic purposes. This longstanding ambition is, however, not straightforward. Non-invasive cancer diagnosis, so called liquid biopsy, requires collection of body fluids with minimal or no sample pretreatment. In those raw matrices, aptamers must recognize minute amounts of biomarkers that are not unique entities but large sets of variants evolving with the disease stage. The susceptibility of aptasensors to assay conditions has driven the selection of aptamers to natural environments to ensure their optimum performance in clinical samples. We present herein a compilation of the SELEX procedures in natural milieus. By revising the electrochemical aptasensors applied to clinical samples for cancer diagnosis and tracing back to the original SELEX we analyze whether aptamers raised using these SELEX strategies are being incorporated to the diagnostic devices and how aptasensors are finding their way to a market dominated by antibody-based assays.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Body Fluids/chemistry , Electrochemical Techniques , Neoplasms/diagnostic imaging , SELEX Aptamer Technique , Humans
5.
Biosensors (Basel) ; 10(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365872

ABSTRACT

Affinity characterization is essential to develop reliable aptamers for tumor biomarker detection. For alpha-fetoprotein (AFP), a biomarker of hepatocellular carcinoma (HCC), two DNA aptamers were described with very different affinity. In this work, we estimate the dissociation constant of both of them by means of a direct assay on magnetic beads modified with AFP and electrochemical detection on carbon screen-printed electrodes (SPCE). Unlike previous works, both aptamers showed similar dissociation constant (Kd) values, in the subµM range. In order to improve the performance of these aptamers, we proposed the isothermal amplification of the aptamers by both terminal deoxynucleotidyl transferase (TdT) and rolling circle amplification (RCA). Both DNA amplifications improved the sensitivity and also the apparent binding constants from 713 nM to 189 nM for the short aptamer and from 526 nM to 32 nM for the long aptamer. This improvement depends on the true affinity of the binding pair, which ultimately limits the analytical usefulness.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , DNA/chemistry , Electrochemical Techniques , Nucleic Acid Amplification Techniques , alpha-Fetoproteins/analysis , Electrodes , Humans
6.
Talanta ; 197: 406-412, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30771954

ABSTRACT

Cancer diagnosis based on serum biomarkers requires receptors of extreme sensitivity and selectivity. Tunability of aptamer selection makes them ideal for that challenge. However, aptamer characterization is a time-consuming task, not always thoroughly addressed, leading to suboptimal aptamer performance. In this work, we report on the affinity characterization and potential usage of two aptamers against a candidate cancer biomarker, the neutrophil gelatinase-associated lipocalin (NGAL). Electrochemical sandwich assays on Au electrodes and SPR experiments showed a restricted capture ability of one of the aptamers (LCN2-4) and a small detectability of the other (LCN2-2). Interestingly, a truncated version of the signaling aptamer LCN2-2 selectively binds to NGAL covalently linked to magnetic beads due to high local protein concentration. The functional affinity of this aptamer is enhanced by three-orders of magnitude using rolling circle amplification (RCA), completed in only 15 min, followed by hybridization with short complementary fluorescein-tag probes, enzyme labeling and chronoamperometric measurement. Microscale thermophoresis experiments show a poor affinity for the protein in solution, which urges the importance of a full and in-depth characterization of aptamers to be used as diagnostic reagents.


Subject(s)
Aptamers, Nucleotide/chemistry , Lipocalin-2/chemistry , Nucleic Acid Amplification Techniques , Aptamers, Nucleotide/metabolism , Biosensing Techniques , Electrochemical Techniques , Humans , Lipocalin-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...