Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Xenobiotica ; 52(8): 878-889, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36189672

ABSTRACT

Loss in potency is commonly observed in early drug discovery when moving from biochemical to more complex cellular systems. Among other factors, low permeability is often considered to cause such potency disconnects.We developed a novel cellular disposition assay in MDCK cells to determine passive uptake clearance (PSinf), cell-to-medium ratios at steady-state (Kp) and the time to reach 90% steady-state (TTSS90) from a single experiment in a high-throughput format.The assay was validated using 40 marketed drugs, showing a wide distribution of PSinf and Kp values. The parameters generally correlated with transcellular permeability and lipophilicity, while PSinf data revealed better resolution in the high and low permeability ranges compared to traditional permeability data. A linear relationship between the Kp/PSinf ratio and TTSS90 was mathematically derived and experimentally validated, demonstrating the dependency of TTSS90 on the rate and extent of cellular accumulation.Cellular disposition parameters could explain potency (IC50) disconnects noted for seven Bruton's tyrosine kinase degrader compounds in a cellular potency assay. In contrast to transcellular permeability, PSinf data enabled identification of the compounds with IC50 disconnects based on their time to reach equilibrium. Overall, the novel assay offers the possibility to address potency disconnects in early drug discovery.


Subject(s)
Drug Discovery , Animals , Dogs , Kinetics , Biological Transport , Madin Darby Canine Kidney Cells
2.
Front Pharmacol ; 12: 785851, 2021.
Article in English | MEDLINE | ID: mdl-35342386

ABSTRACT

Understanding the pharmacokinetic/pharmacodynamic (PK/PD)-relationship of a drug candidate is key to determine effective, yet safe treatment regimens for patients. However, current testing strategies are inefficient in characterizing in vivo responses to fluctuating drug concentrations during multi-day treatment cycles. Methods based on animal models are resource-intensive and require time, while traditional in vitro cell-culturing methods usually do not provide temporally-resolved information on the effects of in vivo-like drug exposure scenarios. To address this issue, we developed a microfluidic system to 1) culture arrays of three-dimensional spheroids in vitro, to 2) apply specific dynamic drug exposure profiles, and to 3) in-situ analyze spheroid growth and the invoked drug effects in 3D by means of 2-photon microscopy at tissue and single-cell level. Spheroids of fluorescently-labeled T-47D breast cancer cells were monitored under perfusion-culture conditions at short time intervals over three days and exposed to either three 24 h-PK-cycles or a dose-matched constant concentration of the phosphatidylinositol 3-kinase inhibitor BYL719. While the overall efficacy of the two treatment regimens was similar, spheroids exposed to the PK profile displayed cycle-dependent oscillations between regression and regrowth. Spheroids treated with a constant BYL719 concentration regressed at a steady, albeit slower rate. At a single-cell level, the cell density in BYL719-treated spheroids oscillated in a concentration-dependent manner. Our system represents a versatile tool for in-depth preclinical characterization of PK/PD parameters, as it enables an evaluation of drug efficacy and/or toxicity under realistic exposure conditions.

3.
J Med Chem ; 59(1): 132-46, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26629594

ABSTRACT

This paper describes the identification of 6-(pyrimidin-4-yloxy)-naphthalene-1-carboxamides as a new class of potent and selective human vascular endothelial growth factor receptor 2 (VEGFR2) tyrosine kinase inhibitors. In biochemical and cellular assays, the compounds exhibit single-digit nanomolar potency toward VEGFR2. Compounds of this series show good exposure in rodents when dosed orally. They potently inhibit VEGF-driven angiogenesis in a chamber model and rodent tumor models at daily doses of less than 3 mg/kg by targeting the tumor vasculature as demonstrated by ELISA for TIE-2 in lysates or by immunohistochemical analysis. This novel series of compounds shows a potential for the treatment of solid tumors and other diseases where angiogenesis plays an important role.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/pharmacokinetics , Animals , CHO Cells , Cell Proliferation/drug effects , Cricetinae , Cricetulus , Female , Human Umbilical Vein Endothelial Cells , Humans , Melanoma, Experimental/drug therapy , Mice , Models, Molecular , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Phosphorylation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Vascular Endothelial Growth Factor A/pharmacology , Xenograft Model Antitumor Assays
4.
Bioorg Med Chem ; 19(24): 7720-7, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22079865

ABSTRACT

New derivatives of 1,4-dideoxy-1,4-imino-D-ribitol have been prepared and evaluated for their cytotoxicity on solid and haematological malignancies. 1,4-Dideoxy-5-O-[(9Z)-octadec-9-en-1-yl]-1,4-imino-D-ribitol (13, IC(50) ∼2 µM) and its C(18)-analogues (IC(50) <10 µM) are cytotoxic toward SKBR3 (breast cancer) cells. 13 also inhibits (IC(50) ∼8 µM) growth of JURKAT cells.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ribitol/analogs & derivatives , Ribitol/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Female , Humans , Jurkat Cells , Neoplasms/drug therapy , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...