Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674478

ABSTRACT

The increase in soil salinization represents a current challenge for plant productivity, as most plants, including crops, are mainly salt-sensitive species. The identification of molecular traits underpinning salt tolerance represents a primary goal for breeding programs. In this scenario, the study of intraspecific variability represents a valid tool for investigating natural genetic resources evolved by plants in different environmental conditions. As a model system, Arabidopsis thaliana, including over 750 natural accessions, represents a species extensively studied at phenotypic, metabolic, and genomic levels under different environmental conditions. Two haplogroups showing opposite root architecture (shallow or deep roots) in response to auxin flux perturbation were identified and associated with EXO70A3 locus variations. Here, we studied the influence of these genetic backgrounds on plant salt tolerance. Eight accessions belonging to the two haplogroups were tested for salt sensitivity by exposing them to moderate (75 mM NaCl) or severe (150 mM NaCl) salt stress. Salt-tolerant accessions were found in both haplogroups, and all of them showed efficient ROS-scavenging ability. Even if an exclusive relation between salt tolerance and haplogroup membership was not observed, the modulation of root system architecture might also contribute to salt tolerance.

2.
Physiol Plant ; 175(5): e14044, 2023.
Article in English | MEDLINE | ID: mdl-37882283

ABSTRACT

We analyzed the changes in the volatilome, proteome, stomatal conductance, salicylic and jasmonic acid contents of a susceptible and a moderately resistant genotype of common bean, Phaseoulus vulgaris L., challenged with Colletotrichum lindemuthianum, the causal agent of fungal anthracnose. Our results indicate differences at both proteome and volatilome levels between the two genotypes, before and after the infection, and different defense strategies. The moderately resistant genotype hindered pathogen infection, invasion, and replication mainly by maintaining epidermal and cell wall structure. The susceptible genotype was not able to limit the early stages of pathogen infection. Rather, stomatal conductance increased in the infected susceptible genotype, and enhanced synthesis of Green Leaf Volatiles and salicylic acid was observed, together with a strong hypersensitive response. Proteomic investigation provided a general framework for physiological changes, whereas observed variations in the volatilome suggested that volatile organic compounds may principally represent stress markers rather than defensive compounds per se.


Subject(s)
Colletotrichum , Phaseolus , Proteome , Phaseolus/genetics , Proteomics , Colletotrichum/genetics , Genotype , Plant Diseases/genetics
3.
Food Energy Secur ; 12(1): e435, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37035025

ABSTRACT

The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.

4.
J Exp Bot ; 74(14): 4225-4243, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37094092

ABSTRACT

Plant roots can exploit beneficial associations with soil-inhabiting microbes, promoting growth and expanding the immune capacity of the host plant. In this work, we aimed to provide new information on changes occurring in tomato interacting with the beneficial fungus Beauveria bassiana. The tomato leaf proteome revealed perturbed molecular pathways during the establishment of the plant-fungus relationship. In the early stages of colonization (5-7 d), proteins related to defense responses to the fungus were down-regulated and proteins related to calcium transport were up-regulated. At later time points (12-19 d after colonization), up-regulation of molecular pathways linked to protein/amino acid turnover and to biosynthesis of energy compounds suggests beneficial interaction enhancing plant growth and development. At the later stage, the profile of leaf hormones and related compounds was also investigated, highlighting up-regulation of those related to plant growth and defense. Finally, B. bassiana colonization was found to improve plant resistance to Botrytis cinerea, impacting plant oxidative damage. Overall, our findings further expand current knowledge on the possible mechanisms underlying the beneficial role of B. bassiana in tomato plants.


Subject(s)
Beauveria , Plant Diseases , Solanum lycopersicum , Beauveria/physiology , Botrytis/physiology , Plant Development , Plant Diseases/microbiology , Plants , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Solanum lycopersicum/physiology , Plant Leaves/metabolism , Proteome , Symbiosis
5.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835502

ABSTRACT

Distinct photosynthetic physiologies are found within the Moricandia genus, both C3-type and C2-type representatives being known. As C2-physiology is an adaptation to drier environments, a study of physiology, biochemistry and transcriptomics was conducted to investigate whether plants with C2-physiology are more tolerant of low water availability and recover better from drought. Our data on Moricandia moricandioides (Mmo, C3), M. arvensis (Mav, C2) and M. suffruticosa (Msu, C2) show that C3 and C2-type Moricandias are metabolically distinct under all conditions tested (well-watered, severe drought, early drought recovery). Photosynthetic activity was found to be largely dependent upon the stomatal opening. The C2-type M. arvensis was able to secure 25-50% of photosynthesis under severe drought as compared to the C3-type M. moricandioides. Nevertheless, the C2-physiology does not seem to play a central role in M. arvensis drought responses and drought recovery. Instead, our biochemical data indicated metabolic differences in carbon and redox-related metabolism under the examined conditions. The cell wall dynamics and glucosinolate metabolism regulations were found to be major discriminators between M. arvensis and M. moricandioides at the transcription level.


Subject(s)
Brassicaceae , Droughts , Drought Resistance , Brassicaceae/metabolism , Photosynthesis/physiology , Plants/metabolism , Water/metabolism , Plant Leaves/metabolism
6.
Plants (Basel) ; 12(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36679046

ABSTRACT

Isoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO2 and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO2 and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate. Isoprene emitters maintained higher photosynthesis and electron transport rates under moderate stress in future climate conditions. However, physiological resistance to water stress in the isoprene-emitting plants was not as marked as expected in actual climate conditions, perhaps because the stress developed rapidly. In actual climate, isoprene emission capacity affected the tobacco proteomic profile, in particular by upregulating proteins associated with stress protection. Our results strengthen the hypothesis that isoprene biosynthesis is related to metabolic changes at the gene and protein levels involved in the activation of general stress defensive mechanisms of plants.

7.
J Exp Bot ; 74(3): 688-706, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36420758

ABSTRACT

Photolytic generation of nitric oxide (NO), isoprene, and reactive oxygen species (ROS) pre-dated life on Earth (~4 billion years ago). However, isoprene-ROS-NO interactions became relevant to climate chemistry ~50 million years ago, after aquatic and terrestrial ecosystems became dominated by isoprene-emitting diatoms and angiosperms. Today, NO and NO2 (together referred to as NOx) are dangerous biogenic gaseous atmospheric pollutants. In plants, NO, with its multiple sources and sinks, acts as a secondary messenger that regulates development at low doses and induces cell death at high doses. Likewise, biogenic isoprene is a putative antioxidant and hormone 'enabler' that hastens plant (and leaf) growth and reproduction, and improves plant tolerance to transient abiotic stresses. Using examples from controlled-chamber simulation and field studies of isoprene oxidation, we discuss the likely nature and extent of isoprene oxidation within leaves. We argue that isoprene-NO interactions vary greatly among plant species, driven by differences in isoprene emission rate and nitrate assimilation capacity (i.e. NO sink strength), ROS availability, and the within-leaf ratio between free-NO and isoprene. In a warmer and CO2-fertilized future climate, antagonism between isoprene and NO within leaves will probably occur in a NO-rich (relative to present) environment, yielding a greater proportion of isoprene oxidation products, and inducing major changes in NO-mediated growth and stress responses.


Subject(s)
Ecosystem , Nitric Oxide , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Plants/metabolism , Butadienes/metabolism , Hemiterpenes/metabolism , Plant Leaves/metabolism , Pentanes/metabolism
8.
Front Plant Sci ; 14: 1309747, 2023.
Article in English | MEDLINE | ID: mdl-38173923

ABSTRACT

Plants are central to complex networks of multitrophic interactions. Increasing evidence suggests that beneficial microorganisms (BMs) may be used as plant biostimulants and pest biocontrol agents. We investigated whether tomato (Solanum lycopersicum) plants are thoroughly colonized by the endophytic and entomopathogenic fungus Beauveria bassiana, and how such colonization affects physiological parameters and the phenotype of plants grown under unstressed conditions or exposed to the pathogenic fungus Botrytis cinerea. As a positive control, a strain of the well-known biocontrol agent and growth inducer Trichoderma afroharzianum was used. As multitrophic interactions are often driven by (or have consequences on) volatile organic compounds (VOCs) released by plants constitutively or after induction by abiotic or biotic stresses, VOC emissions were also studied. Both B. bassiana and T. afroharzianum induced a significant but transient (one to two-day-long) reduction of stomatal conductance, which may indicate rapid activation of defensive (rejection) responses, but also limited photosynthesis. At later stages, our results demonstrated a successful and complete plant colonization by B. bassiana, which induced higher photosynthesis and lower respiration rates, improved growth of roots, stems, leaves, earlier flowering, higher number of fruits and yield in tomato plants. Beauveria bassiana also helped tomato plants fight B. cinerea, whose symptoms in leaves were almost entirely relieved with respect to control plants. Less VOCs were emitted when plants were colonized by B. bassiana or infected by B. cinerea, alone or in combination, suggesting no activation of VOC-dependent defensive mechanisms in response to both fungi.

9.
Sci Total Environ ; 840: 156606, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35691351

ABSTRACT

The atmospheric concentration of carbon dioxide ([CO2]) and oxygen ([O2]) directly influence rates of photosynthesis (PN) and photorespiration (RPR) through the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Levels of [CO2] and [O2] have varied over Earth history affecting rates of both CO2 uptake and loss, alongside associated transpirative water-loss. The availability of CO2 has likely acted as a stronger selective pressure than [O2] due to the greater specificity of RubisCO for CO2. The role of [O2], and the interaction of [O2] and [CO2], in plant evolutionary history is less understood. We exposed twelve phylogenetically diverse species to combinations of sub-ambient, ambient and super-ambient [O2] and [CO2] to examine the biochemical and diffusive components of PN and the possible role of [O2] as a selective pressure. Photosynthesis, photosynthetic capacity and stomatal, mesophyll and total conductance to CO2 were higher in the derived eudicot and monocot angiosperms than the more basal ferns, gymnosperms and basal angiosperms which originated in atmospheres characterised by higher CO2:O2 ratios. The ratio of RPR:PN was lower in the monocots, consistent with greater carboxylation capacity and higher stomatal and mesophyll conductance making easier CO2 delivery to chloroplasts. The effect of [O2] and [CO2] on PN/RPR was less evident in more derived species with a higher conductance to CO2. The effect of [O2] was less apparent at high [CO2], suggesting that atmospheric [O2] may only have exerted a strong selective pressure on plant photosynthetic processes during periods characterised by low atmospheric CO2:O2 ratios. Current rising [CO2] will predominantly enhance PN rates in species with low diffusive conductance to CO2.


Subject(s)
Carbon Dioxide , Ribulose-Bisphosphate Carboxylase , Atmosphere , Oxygen , Photosynthesis , Plant Leaves/metabolism , Plants/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism
10.
Life (Basel) ; 12(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35629319

ABSTRACT

MicroRNAs (miRNAs) are a class of non-coding molecules involved in the regulation of a variety of biological processes. They have been identified and characterized in several plant species, but only limited data are available for Arundo donax L., one of the most promising bioenergy crops. Here we identified, for the first time, A. donax conserved and novel miRNAs together with their targets, through a combined analysis of high-throughput sequencing of small RNAs, transcriptome and degradome data. A total of 134 conserved miRNAs, belonging to 45 families, and 27 novel miRNA candidates were identified, along with the corresponding primary and precursor miRNA sequences. A total of 96 targets, 69 for known miRNAs and 27 for novel miRNA candidates, were also identified by degradome analysis and selected slice sites were validated by 5'-RACE. The identified set of conserved and novel candidate miRNAs, together with their targets, extends our knowledge about miRNAs in monocots and pave the way to further investigations on miRNAs-mediated regulatory processes in A. donax, Poaceae and other bioenergy crops.

11.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35457125

ABSTRACT

Arundo donax has been recognized as a promising crop for biomass production on marginal lands due to its superior productivity and stress tolerance. However, salt stress negatively impacts A. donax growth and photosynthesis. In this study, we tested whether the tolerance of A. donax to salinity stress can be enhanced by the addition of 5-aminolevulinic acid (ALA), a known promoter of plant growth and abiotic stress tolerance. Our results indicated that root exposure to ALA increased the ALA levels in leaves along the A. donax plant profile. ALA enhanced Na+ accumulation in the roots of salt-stressed plants and, at the same time, lowered Na+ concentration in leaves, while a reduced callose amount was found in the root tissue. ALA also improved the photosynthetic performance of salt-stressed apical leaves by stimulating stomatal opening and preventing an increase in the ratio between abscisic acid (ABA) and indol-3-acetic acid (IAA), without affecting leaf methanol emission and plant growth. Supply of ALA to the roots reduced isoprene fluxes from leaves of non-stressed plants, while it sustained isoprene fluxes along the profile of salt-stressed A. donax. Thus, ALA likely interacted with the methylerythritol 4-phosphate (MEP) pathway and modulate the synthesis of either ABA or isoprene under stressful conditions. Overall, our study highlights the effectiveness of ALA supply through soil fertirrigation in preserving the young apical developing leaves from the detrimental effects of salt stress, thus helping of A. donax to cope with salinity and favoring the recovery of the whole plant once the stress is removed.


Subject(s)
Aminolevulinic Acid , Plant Growth Regulators , Abscisic Acid/metabolism , Aminolevulinic Acid/metabolism , Butadienes , Hemiterpenes , Photosynthesis , Plant Leaves/metabolism , Plant Roots/metabolism , Poaceae/metabolism , Salt Stress
12.
Int J Mol Sci ; 23(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35409196

ABSTRACT

Isoprene is a small lipophilic molecule synthesized in plastids and abundantly released into the atmosphere. Isoprene-emitting plants are better protected against abiotic stresses, but the mechanism of action of isoprene is still under debate. In this study, we compared the physiological responses and proteomic profiles of Arabidopsis which express the isoprene synthase (ISPS) gene and emit isoprene with those of non-emitting plants under both drought-stress (DS) and well-watered (WW) conditions. We aimed to investigate whether isoprene-emitting plants displayed a different proteomic profile that is consistent with the metabolic changes already reported. Only ISPS DS plants were able to maintain the same photosynthesis and fresh weight of WW plants. LC-MS/MS-based proteomic analysis revealed changes in protein abundance that were dependent on the capacity for emitting isoprene in addition to those caused by the DS. The majority of the proteins changed in response to the interaction between DS and isoprene emission. These include proteins that are associated with the activation of secondary metabolisms leading to ABA, trehalose, and proline accumulations. Overall, our proteomic data suggest that isoprene exerts its protective mechanism at different levels: under drought stress, isoprene affects the abundance of chloroplast proteins, confirming a strong direct or indirect antioxidant action and also modulates signaling and hormone pathways, especially those controlling ABA synthesis. Unexpectedly, isoprene also alters membrane trafficking.


Subject(s)
Arabidopsis , Droughts , Arabidopsis/genetics , Arabidopsis/metabolism , Butadienes/metabolism , Butadienes/pharmacology , Chromatography, Liquid , Hemiterpenes/metabolism , Pentanes/metabolism , Photosynthesis , Proteomics , Stress, Physiological , Tandem Mass Spectrometry , Water/metabolism
13.
New Phytol ; 234(3): 804-812, 2022 05.
Article in English | MEDLINE | ID: mdl-35170033

ABSTRACT

Some canonical plant hormones such as auxins and gibberellins have precursors that are biogenic volatiles (indole, indole acetonitrile, phenylacetaldoxime and ent-kaurene). Cytokinins, abscisic acid and strigolactones are hormones comprising chemical moieties that have distinct volatile analogues, and are synthesised alongside constitutively emitted volatiles (isoprene, sesquiterpenes, lactones, benzenoids and apocarotenoid volatiles). Nonvolatile hormone analogues and biogenic volatile organic compounds (BVOCs) evolved in tandem as growth and behavioural regulators in unicellular organisms. In plants, however, nonvolatile hormones evolved as regulators of growth, development and differentiation, while endogenous BVOCs (often synthesised lifelong) became subtle regulators of hormone synthesis, availability, activity and turnover, all supported by functionally redundant components of hormone metabolism. Reciprocal changes in the abundance and activity of hormones, nitric oxide, and constitutive plant volatiles constantly bridge retrograde and anterograde signalling to maintain hormone equilibria even in unstressed plants. This is distinct from transient interference in hormone signalling by stress-induced and exogenously received volatiles.


Subject(s)
Plants , Volatile Organic Compounds , Homeostasis , Hormones/metabolism , Plant Growth Regulators/metabolism , Plants/metabolism , Volatile Organic Compounds/metabolism
14.
Physiol Plant ; 174(1): e13619, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34988977

ABSTRACT

Many agronomic trials demonstrated the nitrogen-fixing ability of the ferns Azolla spp. and its obligate cyanobiont Trichormus azollae. In this study, we have screened the emission of volatile organic compounds (VOCs) and analyzed pigments (chlorophylls, carotenoids) as well as phenolic compounds in Azolla filiculoides-T. azollae symbionts exposed to different light intensities. Our results revealed VOC emission mainly comprising isoprene and methanol (~82% and ~13% of the overall blend, respectively). In particular, by dissecting VOC emission from A. filiculoides and T. azollae, we found that the cyanobacterium does not emit isoprene, whereas it relevantly contributes to the methanol flux. Enhanced isoprene emission capacity (15.95 ± 2.95 nmol m-2  s-1 ), along with increased content of both phenolic compounds and carotenoids, was measured in A. filiculoides grown for long-term under high (700 µmol m-2  s-1 ) rather than medium (400 µmol m-2  s-1 ) and low (100 µmol m-2  s-1 ) light intensity. Moreover, light-responses of chlorophyll fluorescence demonstrated that A. filiculoides was able to acclimate to high growth light. However, exposure of A. filiculoides from low (100 µmol m-2  s-1 ) to very high light (1000 µmol m-2  s-1 ) did not affect, in the short term, photosynthesis, but slightly decreased isoprene emission and leaf pigment content whereas, at the same time, dramatically raised the accumulation of phenolic compounds (i.e. deoxyanthocyanidins and phlobaphenes). Our results highlight a coordinated photoprotection mechanism consisting of isoprene emission and phenolic compounds accumulation employed by A. filiculoides to cope with increasing light intensities.


Subject(s)
Ferns , Light , Nitrogen , Phenols , Plant Leaves
15.
Trends Plant Sci ; 27(1): 29-38, 2022 01.
Article in English | MEDLINE | ID: mdl-34544607

ABSTRACT

Plants communicate via the emission of volatile organic compounds (VOCs) with many animals as well as other plants. We still know little about how VOCs are perceived by receiving (eavesdropping) plants. Here we propose a multiple system of VOC perception, where stress-induced VOCs dock on odorant-binding proteins (OBPs) like in animals and are transported to as-yet-unknown receptors mediating downstream metabolic and/or behavioral changes. Constitutive VOCs that are broadly and lifelong emitted by plants do not bind OBPs but may directly change the metabolism of eavesdropping plants. Deciphering how plants listen to their talking neighbors could empower VOCs as a tool for bioinspired strategies of plant defense when challenged by abiotic and biotic stresses.


Subject(s)
Plants , Volatile Organic Compounds , Animals , Stress, Physiological
16.
New Phytol ; 234(3): 961-974, 2022 05.
Article in English | MEDLINE | ID: mdl-34716577

ABSTRACT

Isoprene, a major biogenic volatile hydrocarbon of climate-relevance, indisputably mitigates abiotic stresses in emitting plants. However functional relevance of constitutive isoprene emission in unstressed plants remains contested. Isoprene and cytokinins (CKs) are synthesized from a common substrate and pathway in chloroplasts. It was postulated that isoprene emission may affect CK-metabolism. Using transgenic isoprene-emitting (IE) Arabidopsis and isoprene nonemitting (NE) RNA-interference grey poplars (paired with respective NE and IE genotypes), the life of individual IE and NE leaves from emergence to abscission was followed under stress-free conditions. We monitored plant growth rate, aboveground developmental phenotype, modelled leaf photosynthetic energy status, quantified the abundance of leaf CKs, analysed Arabidopsis and poplar leaf transcriptomes by RNA-sequencing in presence and absence of isoprene during leaf senescence. Isoprene emission by unstressed leaves enhanced the abundance of CKs (isopentenyl adenine and its precursor) by > 200%, significantly upregulated genes coding for CK-synthesis, CK-signalling and CK-degradation, hastened plant development, increased chloroplast metabolic rate, altered photosynthetic energy status, induced early leaf senescence in both Arabidopsis and poplar. IE leaves senesced sooner even in decapitated poplars where source-sink relationships and hormone homeostasis were perturbed. Constitutive isoprene emission significantly accelerates CK-led leaf and organismal development and induces early senescence independent of growth constraints. Isoprene emission provides an early-riser evolutionary advantage and shortens lifecycle duration to assist rapid diversification in unstressed emitters.


Subject(s)
Hemiterpenes , Pentanes , Butadienes/metabolism , Butadienes/pharmacology , Cytokinins/metabolism , Hemiterpenes/metabolism , Pentanes/metabolism , Plant Leaves/metabolism
17.
Sci Rep ; 11(1): 18598, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34545124

ABSTRACT

One of the main impacts of climate change on agriculture production is the dramatic increase of saline (Na+) content in substrate, that will impair crop performance and productivity. Here we demonstrate how the application of smart technologies such as an in vivo sensor, termed bioristor, allows to continuously monitor in real-time the dynamic changes of ion concentration in the sap of Arundo donax L. (common name giant reed or giant cane), when exposed to a progressive salinity stress. Data collected in vivo by bioristor sensors inserted at two different heights into A. donax stems enabled us to detect the early phases of stress response upon increasing salinity. Indeed, the continuous time-series of data recorded by the bioristor returned a specific signal which correlated with Na+ content in leaves of Na-stressed plants, opening a new perspective for its application as a tool for in vivo plant phenotyping and selection of genotypes more suitable for the exploitation of saline soils.

18.
Biology (Basel) ; 10(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34356545

ABSTRACT

The realization of the full objectives of international policies targeting global food security and climate change mitigation, including the United Nation's Sustainable Development Goals, the Paris Climate Agreement COP21 and the European Green Deal, requires that we (i) sustainably increase the yield, nutritional quality and biodiversity of major crop species, (ii) select climate-ready crops that are adapted to future weather dynamic and (iii) increase the resource use efficiency of crops for sustainably preserving natural resources. Ultimately, the grand challenge to be met by agriculture is to sustainably provide access to sufficient, nutritious and diverse food to a worldwide growing population, and to support the circular bio-based economy. Future-proofing our crops is an urgent issue and a challenging goal, involving a diversity of crop species in differing agricultural regimes and under multiple environmental drivers, providing versatile crop-breeding solutions within wider socio-economic-ecological systems. This goal can only be realized by a large-scale, international research cooperation. We call for international action and propose a pan-European research initiative, the CropBooster Program, to mobilize the European plant research community and interconnect it with the interdisciplinary expertise necessary to face the challenge.

19.
Elife ; 102021 06 23.
Article in English | MEDLINE | ID: mdl-34161230

ABSTRACT

Volatile organic compounds (VOCs) from 'emitting' plants inform the 'receiving' (listening) plants of impending stresses or simply of their presence. However, the receptors that allow receivers to detect the volatile cue are elusive. Most likely, plants (as animals) have odorant-binding proteins (OBPs), and in fact, a few OBPs are known to bind 'stress-induced' plant VOCs. We investigated whether these and other putative OBPs may bind volatile constitutive and stress-induced isoprenoids, the most emitted plant VOCs, with well-established roles in plant communication and defense. Molecular docking simulation experiments suggest that structural features of a few plant proteins screened in databases could allow VOC binding. In particular, our results show that monoterpenes may bind the same plant proteins that were described to bind other stress-induced VOCs, while the constitutive hemiterpene isoprene is unlikely to bind any investigated putative OBP and may not have an info-chemical role. We conclude that, as for animal, there may be plant OBPs that bind multiple VOCs. Plant OBPs may play an important role in allowing plants to eavesdrop messages by neighboring plants, triggering defensive responses and communication with other organisms.


Subject(s)
Arabidopsis/metabolism , Nicotiana/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Receptors, Odorant/metabolism , Terpenes/metabolism , Volatile Organic Compounds/metabolism , Arabidopsis Proteins/metabolism , Computer Simulation
20.
Antioxidants (Basel) ; 10(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925614

ABSTRACT

Isoprene (C5H8) is a small lipophilic, volatile organic compound (VOC), synthesized in chloroplasts of plants through the photosynthesis-dependent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Isoprene-emitting plants are better protected against thermal and oxidative stresses but only about 20% of the terrestrial plants are able to synthesize isoprene. Many studies have been performed to understand the still elusive isoprene protective mechanism. Isoprene reacts with, and quenches, many harmful reactive oxygen species (ROS) like singlet oxygen (1O2). A role for isoprene as antioxidant, made possible by its reduced state and conjugated double bonds, has been often suggested, and sometimes demonstrated. However, as isoprene is present at very low concentrations compared to other molecules, its antioxidant role is still controversial. Here we review updated evidences on the function(s) of isoprene, and outline contrasting indications on whether isoprene is an antioxidant directly scavenging ROS, or a membrane strengthener, or a modulator of genomic, proteomic and metabolomic profiles (perhaps as a secondary effect of ROS removal) eventually leading to priming of antioxidant plant defenses, or a signal of stress for neighbor plants alike other VOCs, or a hormone-like molecule, controlling the metabolic flux of other hormones made by the MEP pathway, or acting itself as a growth and development hormone.

SELECTION OF CITATIONS
SEARCH DETAIL
...