Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Environ Mol Mutagen ; 58(3): 146-161, 2017 04.
Article in English | MEDLINE | ID: mdl-28370322

ABSTRACT

We previously described a multiplexed in vitro genotoxicity assay based on flow cytometric analysis of detergent-liberated nuclei that are simultaneously stained with propidium iodide and labeled with fluorescent antibodies against p53, γH2AX, and phospho-histone H3. Inclusion of a known number of microspheres provides absolute nuclei counts. The work described herein was undertaken to evaluate the interlaboratory transferability of this assay, commercially known as MultiFlow® DNA Damage Kit-p53, γH2AX, Phospho-Histone H3. For these experiments, seven laboratories studied reference chemicals from a group of 84 representing clastogens, aneugens, and nongenotoxicants. TK6 cells were exposed to chemicals in 96-well plates over a range of concentrations for 24 hr. At 4 and 24 hr, cell aliquots were added to the MultiFlow reagent mix and following a brief incubation period flow cytometric analysis occurred, in most cases directly from a 96-well plate via a robotic walk-away data acquisition system. Multiplexed response data were evaluated using two analysis approaches, one based on global evaluation factors (i.e., cutoff values derived from all interlaboratory data), and a second based on multinomial logistic regression that considers multiple biomarkers simultaneously. Both data analysis strategies were devised to categorize chemicals as predominately exhibiting a clastogenic, aneugenic, or nongenotoxic mode of action (MoA). Based on the aggregate 231 experiments that were performed, assay sensitivity, specificity, and concordance in relation to a priori MoA grouping were ≥ 92%. These results are encouraging as they suggest that two distinct data analysis strategies can rapidly and reliably predict new chemicals' predominant genotoxic MoA based on data from an efficient and transferable multiplexed in vitro assay. Environ. Mol. Mutagen. 58:146-161, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
DNA Damage , Flow Cytometry/methods , Laboratories , Mutagenicity Tests/methods , Mutagens/toxicity , Aneugens/toxicity , Animals , Cell Culture Techniques , Histones/genetics , Humans , Laboratories/standards , Logistic Models , Phosphorylation , Pilot Projects , Reproducibility of Results , Robotics , Sensitivity and Specificity , Tumor Suppressor Protein p53/genetics
2.
Environ Mol Mutagen ; 58(5): 284-295, 2017 06.
Article in English | MEDLINE | ID: mdl-28266061

ABSTRACT

The Organization for Economic Cooperation and Development (OECD) recently revised the test guidelines (TGs) for genetic toxicology. This article describes the main issues addressed during the revision process, and the new and consistent recommendations made in the revised TGs for: (1) demonstration of laboratory proficiency; (2) generation and use of robust historical control data; (3) improvement of the statistical power of the tests; (4) selection of top concentration for in vitro assays; (5) consistent data interpretation and determination of whether the result is clearly positive, clearly negative or needs closer consideration; and, (6) consideration of 3R's for in vivo assay design. The revision process resulted in improved consistency among OECD TGs (including the newly developed ones) and more comprehensive recommendations for the conduct and the interpretation of the assays. Altogether, the recommendations made during the revision process should improve the efficiency, by which the data are generated, and the quality and reliability of test results. Environ. Mol. Mutagen. 58:284-295, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Guidelines as Topic , Mutagenicity Tests/standards , Animals , Humans
3.
Article in English | MEDLINE | ID: mdl-26232254

ABSTRACT

Accumulated evidence has shown that in vitro mammalian cell genotoxicity assays produce high frequencies of "misleading" positive results, i.e. predicted hazard is not confirmed in in vivo and/or carcinogenicity studies [1], raising the question of relevance to human risk assessment. A recent study of micronucleus (MN) induction [2] showed that commonly used p53-deficient rodent cell lines (CHL, CHO and V79) gave a higher frequency of "misleading" positive results with 9 non-DNA reactive, Ames-negative and in vivo negative chemicals [3] than human p53-competent cells (blood lymphocytes, TK6 and HepG2 cell lines). This raised the question of whether these differences were due to p53 status or species origin. This present study compared human versus mouse and p53-competent versus p53-mutated function. The same 9 chemicals were tested for induction of MN in mouse lymphoma L5178Y (mutated p53), human TK6 (functional p53) and WIL2-NS (TK6 related, with mutated p53) cells. Six chemicals provided clear positive increases in MN frequency in at least one cell type. L5178Y cells yielded clear positive responses with more chemicals than either TK6 or WIL2-NS, indicating origin rather than p53 functionality was most relevant. Apoptosis induction (measured via caspase-3/7) was also investigated with clear differences in the timing and extent of apoptosis induction between mouse and human cells noted. With curcumin in TK6 cells, induction of caspase-3/7 activity coincided with MN induction, whereas for L5178Y cells, MN induction occurred in the absence of increased caspase activity. By contrast, with MMS in TK6 cells, MN induction preceded increased caspase-3/7 activity. These data suggest that MN induction by "misleading positive" genotoxins in p53-competent human cell lines may result from apoptosis, whereas in p53-defective rodent cells such as L5178Y, MN induction may be independent of apoptosis.


Subject(s)
Apoptosis/genetics , Micronucleus Tests/methods , Mutation , Tumor Suppressor Protein p53/genetics , Acrylates/pharmacology , Animals , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Chlorophenols/pharmacology , Curcumin/pharmacology , Cytochalasin B/pharmacology , DNA Damage , Dose-Response Relationship, Drug , Eugenol/pharmacology , Lymphocytes/drug effects , Lymphocytes/metabolism , Mice , Nitrophenols/pharmacology , Organic Chemicals/pharmacology , Phthalic Anhydrides/pharmacology , Propyl Gallate/pharmacology , Reproducibility of Results , Resorcinols/pharmacology , ortho-Aminobenzoates/pharmacology
4.
Article in English | MEDLINE | ID: mdl-25813722

ABSTRACT

We showed previously that tungsten carbide-cobalt (WC-Co) nanoparticles (NP) can be used as a nanoparticulate positive control in some in vitro mammalian genotoxicity assays. Here, we investigate the mechanisms of action involved in WC-Co NP genotoxicity in L5178Y mouse lymphoma cells and primary human lymphocytes, in vitro. Data from the micronucleus assay coupled with centromere staining and from the chromosome-aberration assay show the involvement of both clastogenic and aneugenic events. Experiments with the formamidopyrimidine DNA glycosylase (FPG)-modified comet assay showed a slight (non-significant) increase in FPG-sensitive sites in the L5178Y mouse lymphoma cells but not in the human lymphocytes. Electron paramagnetic resonance spin-trapping results showed the presence of hydroxyl radicals (•OH) in WC-Co NP suspensions, with or without cells, but with time-dependent production in the presence of cells. However, a significant difference in •OH production was observed between human lymphocytes from two different donors. Using H2O2, we showed that WC-Co NP can participate in Fenton-like reactions. Thus, •OH might be produced either via intrinsic generation by WC-Co NP or through a Fenton-like reaction in the presence of cells.


Subject(s)
Cobalt/toxicity , DNA Damage/drug effects , Nanoparticles/chemistry , Tungsten Compounds/toxicity , Aneugens/metabolism , Animals , Cell Line, Tumor , Chromosome Aberrations/drug effects , Cobalt/chemistry , Comet Assay , Humans , In Situ Hybridization, Fluorescence , Lymphocytes/drug effects , Lymphocytes/metabolism , Mice , Micronucleus Tests , Mutagens/metabolism , Reactive Oxygen Species/metabolism , Tungsten Compounds/chemistry
5.
Toxicol Sci ; 137(1): 125-34, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24085191

ABSTRACT

With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.


Subject(s)
Cobalt/toxicity , Lymphocytes/drug effects , Lymphoma/genetics , Metal Nanoparticles/toxicity , Mutagenicity Tests/standards , Tungsten Compounds/toxicity , Adult , Animals , Cell Line, Tumor , Comet Assay/standards , Dose-Response Relationship, Drug , Female , Humans , Lymphocytes/metabolism , Lymphocytes/pathology , Lymphoma/metabolism , Lymphoma/pathology , Male , Mice , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests/standards , Reference Standards
6.
Mutagenesis ; 27(3): 295-304, 2012 May.
Article in English | MEDLINE | ID: mdl-22058015

ABSTRACT

The in vitro micronucleus test is considered as an attractive tool for genotoxicity testing of chemicals because of its simplicity of scoring and wide applicability in different cell types. However, most of the cells currently in use are devoid of the enzyme equipment required for activation of promutagens in the genotoxic metabolites. We postulated that the human HepaRG cell line, which can express xenobiotic metabolising enzymes at levels close to those found in primary human hepatocytes and has retained the indefinite growth capacity of transformed cells, could represent a more suitable model for genotoxicity testing of chemicals requiring metabolic activation. Based on the recommendations of the Organisation for Economic Co-operation and Development test guideline TG 487 for testing of chemicals, HepaRG cell cultures containing >80% mature hepatocytes were treated in situ with various chemicals for 24 h followed by a 3-day mitogenic stimulation with epidermal growth factor without cytokinesis block. In such culture conditions, HepaRG cells underwent >1.5 cell cycle per cell during the mitogenic stimulation. While non-genotoxic compounds (mannitol and staurosporine) did not increase the rate of micronucleated mononucleated cells, all aneugens (colchicine, nocodazole and dichlorodiphenyldichloroethylene) as well as the direct acting clastogen methyl methanesulfonate and clastogens requiring metabolic activation (aflatoxin B1, benzo(a)pyrene and 2-nitrofluorene) induced a statistically significant concentration-related increase in the number of mono-micronucleated cells. The micronucleus test was also performed after 7-day repeat exposure of HepaRG cells to the chemicals. Noticeably, a time-dependent effect was obtained with the three clastogens requiring metabolic activation. In conclusion, our results obtained with HepaRG hepatocytes exposed to various genotoxic compounds requiring or not bioactivation, compared favorably with those reported in various other cell types. They support the view that metabolically competent HepaRG cells have unique potential benefits for testing genotoxic compounds using the in vitro micronucleus assay.


Subject(s)
Micronuclei, Chromosome-Defective/chemically induced , Aneugens/pharmacology , Apoptosis/drug effects , Aryl Hydrocarbon Hydroxylases/metabolism , Cell Line, Transformed , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytochrome P-450 CYP2B6 , Cytochrome P-450 CYP3A/metabolism , Humans , Micronucleus Tests/methods , Mutagenicity Tests , Mutagens/pharmacology , Oxidoreductases, N-Demethylating/metabolism , Reproducibility of Results , Testosterone/metabolism , Toxicity Tests
7.
Mutat Res ; 723(2): 77-83, 2011 Aug 16.
Article in English | MEDLINE | ID: mdl-21255675

ABSTRACT

The selection of maximum concentrations for in vitro mammalian cell genotoxicity assays was reviewed at the 5th International Workshop on Genotoxicity Testing (IWGT), 2009. Currently, the top concentration recommended when toxicity is not limiting is 10mM or 5mg/ml, whichever is lower. The discussion was whether to reduce the limit, and if so whether the 1mM limit proposed for human pharmaceuticals was appropriate for testing other chemicals. The consensus was that there was reason to consider reducing the 10mM limit, and many, but not all, attendees favored a reduction to 1mM. Several proposals are described here for the concentration limit. The in vitro cytogenetics expert working group also discussed appropriate measures and level of cytotoxicity. Data were reviewed from a multi-laboratory trial of the in vitro micronucleus (MN) assay with multiple cell types and several types of toxicity measurements. The group agreed on a preference for toxicity measures that take cell proliferation after the beginning of treatment into account (relative increase in cell counts, relative population doubling, cytokinesis block proliferation index or replicative index), and that this applies both to in vitro MN assays and to in vitro chromosome aberration assays. Since relative cell counts (RCC) underestimate toxicity, many group members favored making a recommendation against the use of RCC as a toxicity measure for concentration selection. All 14 chemicals assayed for MN induction in the multi-laboratory trial were detected without exceeding 50% toxicity by any measure, but some were positive only at concentrations with toxicity quite close to 50%. The expert working group agreed to accept the cytotoxicity range recommended by OECD guideline 487 (55±5% toxicity at the top concentration scored). This also reinforces the original intent of the guidance for the in vitro chromosome aberration assay, where ">50%" was intended to target the range close to 50% toxicity.


Subject(s)
Micronucleus Tests/standards , Mutagenicity Tests/standards , Animals , Chromosome Aberrations , Guidelines as Topic , Humans , Mammals , Mutagens/administration & dosage
8.
Environ Mol Mutagen ; 52(3): 177-204, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20963811

ABSTRACT

Appropriate follow-up actions and decisions are needed when evaluating and interpreting clear positive results obtained in the in vitro assays used in the initial genotoxicity screening battery (i.e., the battery of tests generally required by regulatory authorities) to assist in overall risk-based decision making concerning the potential effects of human exposure to the agent under test. Over the past few years, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing developed a decision process flow chart to be applied in case of clear positive results in vitro. It provides for a variety of different possibilities and allows flexibility in choosing follow-up action(s), depending on the results obtained in the initial battery of assays and available information. The intent of the Review Subgroup was not to provide a prescriptive testing strategy, but rather to reinforce the concept of weighing the totality of the evidence. The Review Subgroup of the IVGT committee highlighted the importance of properly analyzing the existing data, and considering potential confounding factors (e.g., possible interactions with the test systems, presence of impurities, irrelevant metabolism), and chemical modes of action when analyzing and interpreting positive results in the in vitro genotoxicity assays and determining appropriate follow-up testing. The Review Subgroup also examined the characteristics, strengths, and limitations of each of the existing in vitro and in vivo genotoxicity assays to determine their usefulness in any follow-up testing.


Subject(s)
Hazardous Substances/toxicity , Mutagenicity Tests/methods , Mutagens/toxicity , Animals , Decision Support Techniques , Dose-Response Relationship, Drug , Endpoint Determination , Hazardous Substances/standards , Humans , International Cooperation , Mutagenicity Tests/trends , Mutagens/standards , Risk Assessment
9.
Mutat Res ; 702(2): 199-207, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-20298804

ABSTRACT

The reference genotoxic agents mitomycin C, cadmium chloride, 2-aminoanthracene, vinblastine sulphate and 5-fluorouracil were tested in the in vitro micronucleus assay, in mouse lymphoma L5178Y cells and in human lymphoblastoid cells TK6, without cytokinesis block. This was done in support of the toxicity measures recommended in the late 2007 version of the draft OECD Test Guideline 487 for the testing of chemicals. Relative Population Doubling and Relative Increase in Cell Counts, used for the selection of the highest concentrations to be evaluated for genotoxicity assessment, based on a 50±5% cytotoxicity, both allowed to equally detect positive mitomycin C, cadmium chloride, 2-aminoanthracene, vinblastine sulphate and 5-fluorouracil on L5178Y and/or TK6 cells. Therefore, these parameters, recommended in the draft Test Guideline 487, are suitable to select the concentrations at the cytotoxicity required for genotoxicity assessment in the in vitro micronucleus assay without cytokinesis block.


Subject(s)
Cytotoxins/toxicity , Micronucleus Tests/methods , Animals , Cell Count , Cell Line , Cell Line, Tumor , Guidelines as Topic , Humans , Leukemia L5178 , Mice , Mutagens/toxicity
10.
Mutat Res ; 655(1-2): 4-21, 2008.
Article in English | MEDLINE | ID: mdl-18602493

ABSTRACT

Appropriate measures of cytotoxicity need to be used when selecting test concentrations in in vitro genotoxicity assays. Underestimation of toxicity may lead to inappropriately toxic concentrations being selected for analysis, with the potential for generation of irrelevant positive results. As guidance for the in vitro micronucleus test is being developed, it is clearly important to compare the different measures of cytotoxicity that can be used both with and without cytokinesis blocking. Therefore, relative cell counts (RCC), relative increase in cell counts (RICC) and relative population doubling (RPD) for treatments without cytokinesis block were compared with replication index (RI) for treatments with cytokinesis block, and the corresponding induction of micronucleated cells was evaluated. A wide range of chemicals and gamma irradiation were used, and in almost all cases, RCC underestimated cytotoxicity when compared with all other measures such that RCC would have resulted in the selection of inappropriately high concentrations for micronuclei analysis. In the absence of cytokinesis block, RICC or RPD is more comparable with RI with cytokinesis block, and therefore considered more appropriate measure of survival. Furthermore, using these estimations of cytotoxicity and the limit of 50% survival, all the mutagens and aneugens tested were appropriately identified as positive in the in vitro micronucleus assay. Accordingly, it was clear that testing beyond 50% survival was not necessary to identify the potential of these agents to induce micronuclei.


Subject(s)
Cytotoxins/toxicity , Micronucleus Tests/methods , Animals , Cell Count , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytochalasin B/metabolism , Mice , Micronucleus Tests/standards
11.
Toxicol Sci ; 98(1): 39-42, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17369197

ABSTRACT

The minimal three-test battery of the International Conference on Harmonization guideline has been in use since 1997 for the development of new pharmaceuticals (ICH, 1997). After a 10-year experience of this core battery in regulatory genotoxicity testing, everywhere the time has come for reflection about what was learned from this experience. Different aspects of genotoxicity testing are currently being debated under different organizations (HESI, 2006; IWGT, 2007; Kirkland et al., 2007). The main concerns are to develop relevant strategies and adequate complementary tests to the minimal battery, appropriate for each specific case to assess risk for humans when in vitro positive results or findings in rodent bioassays for carcinogenicity are found. In this article, an example of an in-house decision tree is shown, with some options which can contribute to the current reflections. Additionally, tools built for early genotoxicity are presented.


Subject(s)
Mutagenicity Tests , Mutagens/toxicity , Pharmaceutical Preparations , Animals , Humans , Teratogens/toxicity
12.
Mutat Res ; 627(1): 36-40, 2007 Feb 03.
Article in English | MEDLINE | ID: mdl-17157054

ABSTRACT

The Mouse Lymphoma Assay (MLA) Workgroup of the International Workshop on Genotoxicity Testing (IWGT), comprised of experts from Japan, Europe and the United States, met on September 9, 2005, in San Francisco, CA, USA. This meeting of the MLA Workgroup was devoted to reaching a consensus on issues involved with 24-h treatment. Recommendations were made concerning the acceptable values for the negative/solvent control (mutant frequency, cloning efficiency and suspension growth) and the criteria to define an acceptable positive control response. Consensus was also reached concerning the use of the global evaluation factor (GEF) and appropriate statistical trend analysis to define positive and negative responses for the 24-h treatment. The Workgroup agreed to continue their support of the International Committee on Harmonization (ICH) recommendation that the MLA assay should include a 24-h treatment (without S-9) in those situations where the short treatment (3-4 h) gives negative results.


Subject(s)
Lymphoma/genetics , Mutagenicity Tests/methods , Mutation , Thymidine Kinase/genetics , Animals , Mice , Mutagens/toxicity , Time Factors
13.
Toxicol Sci ; 96(2): 214-7, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17192442

ABSTRACT

The in vitro micronucleus test is commonly used in the early stages of pharmaceutical development as a predictive tool for the regulatory mouse lymphoma assay or in vitro chromosome aberration test. The accumulated data from this assay leads to the suggestion that it could be used as an alternative to the chromosome aberration test or the mouse lymphoma assay in the regulatory genotoxicity battery. In this paper, we present the results of the in vitro micronucleus test on L5178Y mouse lymphoma cells with 25 compounds from Servier research and have compared these results to those obtained in the genotoxicity regulatory battery. All the negative compounds were also negative in the in vitro micronucleus assay. Among the 14 positive compounds, two of them, positive in the mouse lymphoma assay, were found negative in the in vitro micronucleus test. However, this apparent discordance was likely to be due to cytotoxicity- or high concentration-related false positive responses in the mouse lymphoma assay. In addition, we confirmed that the in vitro micronucleus assay is useful for detecting aneugens, especially, when cells in metaphasis and multinucleated cells are also scored and when cells are allowed to recover after the long treatment. On this series of compounds, the in vitro micronucleus assay showed high sensitivity and possibly a better specificity than the mouse lymphoma assay. Thus, the in vitro micronucleus assay was shown to be at least as adequate as the mouse lymphoma assay or the in vitro chromosome aberration test to be used in the standard genotoxicity battery.


Subject(s)
Chromosome Aberrations/drug effects , Drugs, Investigational/toxicity , Micronucleus Tests/methods , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug-Related Side Effects and Adverse Reactions/prevention & control , Humans , Lymphoma/genetics , Lymphoma/pathology , Mice , Toxicity Tests/methods
14.
Mutat Res ; 607(1): 13-36, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16815079

ABSTRACT

This study, coordinated by the SFTG (French branch of European Environmental Mutagen Society), included 38 participants from Europe, Japan and America. Clastogens (bleomycin, urethane), including base and nucleoside analogs (5-fluorouracil and cytosine arabinoside), aneugens and/or polyploidy inducers (colchicine, diethylstilboestrol, griseofulvin and thiabendazole), as well as non-genotoxic compounds (mannitol and clofibrate), were tested. Four cell types were used, i.e. human lymphocytes in the presence of cytochalasin B and CHO, CHL and L5178Y cell lines, in the presence or absence of cytochalasin B, with various treatment-recovery schedules. Mitomycin C was used as a positive control for all cell types. Mannitol and clofibrate were consistently negative in all cell types and with all treatment-recovery conditions. Urethane, known to induce questionable clastogenicity, was not found as positive. Bleomycin and mitomycin C were found positive in all treatment-recovery conditions. The base and nucleoside analogs were less easy to detect, especially 5-fluorouracil due to the interference with cytotoxicity, while cytosine arabinoside was detected in all cell types depending on the treatment-recovery schedule. Aneugens (colchicine, diethylstilboestrol and griseofulvin) were all detected in all cell types. In this study, the optimal detection was ensured when a short treatment followed by a long recovery was associated with a long continuous treatment without recovery. There was no impact of the presence or absence of cytochalasin B on the detection of micronucleated cells on cell lines. Scoring micronucleated cells in both mononucleated and binucleated cells when using cytochalasin B was confirmed to be useful for the detection and the identification of aneugens. In conclusion, these results, together with previously published validation studies, provide a useful contribution to the optimisation of a study protocol for the detection of both clastogens and aneugens in the in vitro micronucleus test.


Subject(s)
Micronucleus Tests/methods , Aneugens/toxicity , Animals , Bleomycin/toxicity , CHO Cells , Cell Line , Clofibrate/toxicity , Colchicine/toxicity , Cricetinae , Cytarabine/toxicity , Cytochalasin B , Diethylstilbestrol/toxicity , Fluorouracil/toxicity , Griseofulvin/toxicity , Humans , In Vitro Techniques , International Cooperation , Leukemia L5178 , Lymphocytes/drug effects , Mannitol/toxicity , Mice , Micronucleus Tests/standards , Mitomycin/toxicity , Mutagens/toxicity , Thiabendazole/toxicity
15.
Mutat Res ; 607(1): 125-52, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16797225

ABSTRACT

In this report, results are presented from an international study of the in vitro micronucleus assay using mouse lymphoma L5178Y cells. This study was coordinated by an organizing committee supported by the SFTG (the French branch of the European Environmental Mutagen Society). Test chemicals included mannitol, bleomycin, 5-fluorouracil, colchicine and griseofulvin. Mitomycin C was used as a positive control. Each chemical was evaluated in at least two laboratories following a variety of different protocols (short and long exposures, varying recovery times, with and without cytochalasin B) in order to help determine a standard protocol for routine testing in mouse lymphoma L5178Y cells. Mannitol was the only exception, being tested in only one laboratory. Mannitol was negative, while bleomycin induced a concentration-dependent increase in micronucleated cells. Equivocal results were obtained for 5-fluorouracil, colchicine and griseofulvin. High levels of cytotoxicity interfered with the assessment of aneuploidy for colchicine and griseofulvin, preventing the ability to obtain clear results in all the treatment schedules. Experiments with 5-fluorouracil, colchicine and griseofulvin showed that both short and long treatment times are required as each compound was detected using one or more treatment protocol. No clear differences were seen in the sensitivity or accuracy of the responses in the presence of absence of cytochalasin B. It was also found that a recovery period may help to detect compounds which induce a genotoxicity associated to a reduction in cell number or cell proliferation. Overall, the results of the present study show that mouse lymphoma L5178Y cells are suitable for the in vitro micronucleus assay.


Subject(s)
Micronucleus Tests/methods , Mutagens/toxicity , Aneugens/toxicity , Animals , Bleomycin/toxicity , Colchicine/toxicity , Fluorouracil/toxicity , Griseofulvin/toxicity , In Vitro Techniques , International Cooperation , Leukemia L5178 , Mannitol/toxicity , Mice
16.
Mutat Res ; 607(1): 61-87, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16797224

ABSTRACT

In this report, results are presented from an international study of the in vitro micronucleus assay using Chinese hamster ovary cells. This study was coordinated by an organizing committee supported by the SFTG (the French branch of the European Environmental Mutagen Society). Test chemicals included mannitol, bleomycin, cytosine arabinoside, urethane and diethylstilboestrol. Mitomycin C was used as a positive control. Each chemical was evaluated in at least two laboratories following a variety of different protocols (short and long exposures, varying recovery times, with and without cytochalasin B) in order to help determine a standard protocol for routine testing in Chinese hamster ovary cells. Mannitol and urethane were negative, while bleomycin, cytosine arabinoside and diethylstilboestrol induced a dose dependent increase in micronucleated cells. In the presence of cytochalasin B, increases in micronuclei were observed in binucleated as well as mononucleated cells in cultures treated with bleomycin, cytosine arabinoside or diethylstilboestrol. Importantly, all three of these chemicals were detected in each of the different treatment/recovery regimens. No differences were seen in the sensitivity or accuracy of the responses in the presence of absence of cytochalasin B. Overall, these results demonstrate the suitability of Chinese hamster ovary cells for the in vitro micronucleus assay.


Subject(s)
Micronucleus Tests/methods , Mutagens/toxicity , Aneugens/toxicity , Animals , Bleomycin/toxicity , CHO Cells , Cricetinae , Cytarabine/toxicity , Cytochalasin B , Diethylstilbestrol/toxicity , In Vitro Techniques , International Cooperation , Mannitol/toxicity , Mitomycin , Urethane/toxicity
17.
Mutat Res ; 607(1): 88-124, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16782396

ABSTRACT

In this report, are presented the results of an international collaborative study on the in vitro micronucleus assay, using CHL cells. Fourteen laboratories participated in this study which was coordinated by an organizing committee supported by the SFTG (the French branch of the European Environmental Mutagen Society). Nine coded substances, having different modes of action and at different levels were assessed in the in vitro micronucleus test, using a common protocol. Mitomycin C was used as a positive control. In order to help to define a standard protocol on CHL cells, short and long treatment periods followed by various recovery times, with or without cytochalasin B, were compared. After an evaluation of the acceptability of the assays, the tested chemicals were classified as negative, positive or equivocal. Mannitol and clofibrate were judged as negative in all treatment schedules. Bleomycin was positive in all the treatment schedules, with an increase in the number of micronucleated cells in both mononucleate and binucleate cells when using cytochalasin B. This was also shown for the aneugens colchicine, diethylstilboestrol and griseofulvin, as expected. Urethane was judged as equivocal only after long treatment with cytochalasin B, and negative in all other treatment schedules. In any case, no genotoxic compound would have been missed with schedules including a short and a long treatment time, whether the treatment was followed by a recovery period or not and whether cytochalasin B was used or not. Thus, these results show that CHL cells were suitable for accurately detecting clastogenic and aneugenic compounds of various types in the in vitro micronucleus test.


Subject(s)
Micronucleus Tests/methods , Mutagens/toxicity , Aneugens/toxicity , Animals , Bleomycin/toxicity , Cell Line , Clofibrate/toxicity , Colchicine/toxicity , Cricetinae , Cytarabine/toxicity , Cytochalasin B , Diethylstilbestrol/toxicity , Fluorouracil/toxicity , Griseofulvin/toxicity , In Vitro Techniques , International Cooperation , Mannitol/toxicity , Urethane/toxicity
18.
Mutat Res ; 607(1): 37-60, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-16765631

ABSTRACT

This study on the in vitro micronucleus assay, comprising 11 laboratories using human lymphocytes, was coordinated by an organizing committee supported by the SFTG (the French branch of the European Environmental Mutagen Society). Nine coded substances were assessed for their ability to induce micronuclei in human lymphocytes in vitro, mitomycin C being used as a positive control. Cultures were exposed to the test substances for a short (early or late) time or for a long time, followed by a short or long recovery period, in the presence of cytochalasin B. Each chemical was evaluated, generally in two laboratories, using three treatment schedules at least twice. The data were assessed for acceptability, and then classified as negative, positive or equivocal. Two of seven genotoxic compounds, namely colchicine and bleomycin, clearly induced micronuclei. Reproducible results were difficult to obtain for some substances, which tended to be those acting at specific stages of the cell cycle. Cytosine arabinoside, diethylstilboestrol and 5-fluorouracil were classified as equivocal. Urethane and thiabendazole were classified as negative. The two presumed non-genotoxic compounds, mannitol and clofibrate, did not induce micronuclei. Repeat testing, exposing cells at both an early and late time after mitogenic stimulation, was needed to detect substances classified as equivocal. These results show the importance of achieving sufficient inhibition of nuclear division to avoid the possibility of missing an effect. The evaluation of micronuclei in mononucleated as well as binucleated cells was particularly useful to detect aneugens. There were no false positive results using lymphocytes, indicating a high specificity. It is concluded that the clastogenic or aneugenic potential in vitro of the substances tested was correctly identified in this study, but that refining the protocol to take into account factors such as the stages of the cell cycle exposed to the compound, or the duration of recovery would be likely to improve the sensitivity of detection using lymphocytes.


Subject(s)
Lymphocytes/drug effects , Micronucleus Tests/methods , Mutagens/toxicity , Adult , Aneugens/toxicity , Bleomycin/toxicity , Clofibrate/toxicity , Colchicine/toxicity , Cytarabine/toxicity , Diethylstilbestrol/toxicity , Female , Fluorouracil/toxicity , Humans , In Vitro Techniques , International Cooperation , Male , Mannitol/toxicity , Thiabendazole/toxicity , Urethane/toxicity
19.
Mutat Res ; 540(2): 153-63, 2003 Oct 07.
Article in English | MEDLINE | ID: mdl-14550499

ABSTRACT

UNLABELLED: At the Washington "2nd International Workshop on Genotoxicity Testing" (25-26 March 1999) current methodologies and data for the in vitro micronucleus test were reviewed. As a result, guidelines for the conduct of specific aspects of the protocol were developed. Agreement was achieved on the following topics: choice of cells, slide preparation, analysis of micronuclei, toxicity, use of cytochalasin-B, number of doses, and treatment/harvest times [Environ. Mol. Mutagen. 35 (2000) 167]. Because there were a number of important in vitro micronucleus validation studies in progress, it was not possible to design a definitive, internationally harmonized protocol at that time. These studies have now been completed and the data were reviewed at the Plymouth "3rd International Workshop on Genotoxicity Testing" (28-29 June 2002). Data from studies coordinated by the French Society of Genetic Toxicology, Japanese collaborative studies, European pharmaceutical industry validation studies, along with data from Lilly Research Laboratories were used to prepare conclusions on the main aspects of the in vitro micronucleus protocol. In this paper, the consensus agreements on the protocol for performing the in vitro micronucleus assay are presented. The major recommendations concern: 1. Demonstration of cell proliferation: both cell lines and lymphocytes can be used, but demonstration of cell proliferation in both control and treated cells is compulsory for the acceptance of the test. 2. Assessment of toxicity and dose range finding: assessment of toxicity should be performed by determining cell proliferation, e.g. increased cell counts (CC) or population doubling (PD) without cytochalasin-B, or e.g. cytokinesis-block proliferation index with cytochalasin-B; and by determining other markers for cytotoxicity (confluency, apoptosis, necrosis) which can provide valuable additional information. 3. Treatment schedules for cell lines and lymphocytes. 4. Choice of positive controls: without S9-mix both a clastogen (e.g. mitomycin C or bleomycin) and an aneugen (e.g. colchicine) should be included as positive controls and a clastogen that requires S9 for activity when S9-mix is used (e.g. dimethylnitrosamine, or cyclophosphamide in those cell types that cannot activate this agent directly). 5. Duplicate cultures and number of cells to be scored. 6. Repeat experiments: in lymphocytes, for each experiment blood from 2 different healthy young and non-smoking donors should be compared. In cell lines, the experiments need only to be repeated if the first one is negative. 7. STATISTICS: statistical significance should not be the sole factor for determining positive results. Biological meaning should serve as a guideline. Examples of statistical analyses are given.


Subject(s)
Biological Assay/standards , Micronuclei, Chromosome-Defective , Animals , Cell Division/physiology , Erythrocytes/metabolism , Humans , Lymphocytes/metabolism , Mutagenicity Tests/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...