Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35214863

ABSTRACT

A better knowledge of tree vegetative growth phenology and its relationship to environmental variables is crucial to understanding forest growth dynamics and how climate change may affect it. Less studied than reproductive structures, vegetative growth phenology focuses primarily on the analysis of growing shoots, from buds to leaf fall. In temperate regions, low winter temperatures impose a cessation of vegetative growth shoots and lead to a well-known annual growth cycle pattern for most species. The humid tropics, on the other hand, have less seasonality and contain many more tree species, leading to a diversity of patterns that is still poorly known and understood. The work in this study aims to advance knowledge in this area, focusing specifically on herbarium scans, as herbariums offer the promise of tracking phenology over long periods of time. However, such a study requires a large number of shoots to be able to draw statistically relevant conclusions. We propose to investigate the extent to which the use of deep learning can help detect and type-classify these relatively rare vegetative structures in herbarium collections. Our results demonstrate the relevance of using herbarium data in vegetative phenology research as well as the potential of deep learning approaches for growing shoot detection.

2.
Bioscience ; 70(6): 610-620, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32665738

ABSTRACT

Machine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens-preserved plant material curated in natural history collections-but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.

3.
Appl Plant Sci ; 7(3): e01233, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30937225

ABSTRACT

PREMISE OF THE STUDY: Phenological annotation models computed on large-scale herbarium data sets were developed and tested in this study. METHODS: Herbarium specimens represent a significant resource with which to study plant phenology. Nevertheless, phenological annotation of herbarium specimens is time-consuming, requires substantial human investment, and is difficult to mobilize at large taxonomic scales. We created and evaluated new methods based on deep learning techniques to automate annotation of phenological stages and tested these methods on four herbarium data sets representing temperate, tropical, and equatorial American floras. RESULTS: Deep learning allowed correct detection of fertile material with an accuracy of 96.3%. Accuracy was slightly decreased for finer-scale information (84.3% for flower and 80.5% for fruit detection). DISCUSSION: The method described has the potential to allow fine-grained phenological annotation of herbarium specimens at large ecological scales. Deeper investigation regarding the taxonomic scalability of this approach is needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...