Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 99(20): 205701, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18233160

ABSTRACT

We study phase separation in a deeply quenched colloid-polymer mixture in microgravity on the International Space Station using small-angle light scattering and direct imaging. We observe a clear crossover from early-stage spinodal decomposition to late-stage, interfacial-tension-driven coarsening. Data acquired over 5 orders of magnitude in time show more than 3 orders of magnitude increase in domain size, following nearly the same evolution as that in binary liquid mixtures. The late-stage growth approaches the expected linear growth rate quite slowly.

2.
Phys Rev Lett ; 95(4): 048302, 2005 Jul 22.
Article in English | MEDLINE | ID: mdl-16090846

ABSTRACT

Colloidal silica gels are shown to stiffen with time, as demonstrated by both dynamic light scattering and bulk rheological measurements. Their elastic moduli increase as a power law with time, independent of particle volume fraction; however, static light scattering indicates that there are no large-scale structural changes. We propose that increases in local elasticity arising from bonding between neighboring colloidal particles can account for the strengthening of the network, while preserving network structure.

3.
Phys Rev Lett ; 93(10): 108302, 2004 Sep 03.
Article in English | MEDLINE | ID: mdl-15447462

ABSTRACT

We show that the dynamics of large fractal colloid aggregates are well described by a combination of translational and rotational diffusion and internal elastic fluctuations, allowing both the aggregate size and internal elasticity to be determined by dynamic light scattering. The comparison of results obtained in microgravity and on Earth demonstrates that cluster growth is limited by gravity-induced restructuring. In the absence of gravity, thermal fluctuations ultimately inhibit fractal growth and set the fundamental limitation to the lowest volume fraction which will gel.


Subject(s)
Colloids/chemistry , Crystallization/methods , Gels/chemistry , Models, Chemical , Nanotubes/chemistry , Computer Simulation , Deuterium Oxide/chemistry , Diffusion , Elasticity , Fractals , Gravitation , Particle Size , Polystyrenes/chemistry , Temperature , Water/chemistry , Weightlessness
SELECTION OF CITATIONS
SEARCH DETAIL
...