Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Arthritis Rheumatol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782587

ABSTRACT

OBJECTIVE: The objective is to characterize transcriptomic profiles and immune cell composition and distribution in juvenile idiopathic arthritis (JIA) synovial biopsies, assess for associations of these features with clinical parameters, and compare JIA and rheumatoid arthritis (RA) synovial features. METHODS: RNA sequencing (RNASeq) was performed on 24 samples, with pathway analysis and inference of relative abundance of immune cell subsets based on gene expression data. Two multiplex fluorescence immunohistochemistry (IHC) panels were performed on 28 samples (including 13 on which RNASeq was performed), staining for CD206- classical and CD206+ nonclassical macrophages, and CD8+ and CD4+ T and B lymphocytes. Data were compared to a published series of early RA synovial biopsies. RESULTS: Pathway analysis of the most variably expressed genes (n = 339) identified a B and plasma cell signature as the main driver of heterogeneity in JIA synovia, with strong overlap between JIA and RA synovitis. Multiplex IHC confirmed heterogeneity of immune cell infiltration. M1-like macrophage-rich synovial lining was associated with greater lining hypertrophy and higher (CD45+) pan-immune cell and CD8+ T cell infiltration. CONCLUSION: Our study indicates significant similarities between JIA and RA synovitis. Similar to RA, JIA synovia may be broadly categorized into two groups: (1) those with an inflammatory/adaptive immune transcriptomic signature, M1-like macrophage and CD8+ T cell infiltration, and thicker, M1-like macrophage-rich synovial lining, and (2) those with an M2-like macrophage transcriptomic signature, greater M2/M1-like macrophage ratios, and thinner, M2-like macrophage-rich synovial lining. Synovial features were not significantly associated with clinical parameters, likely because of group size and heterogeneity.

2.
Heliyon ; 10(5): e27025, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463764

ABSTRACT

Neuro-inflammation occurs in numerous disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. However, anti-inflammatory drugs for the central nervous system have failed to show significant improvement when compared to a placebo in clinical trials. Our previous work demonstrated that stem cells from the apical papilla (SCAP) can decrease neuro-inflammation and stimulate oligodendrocyte progenitor cell differentiation. One hypothesis is that the therapeutic effect of SCAP could be mediated by their secretome, including extracellular vesicles (EV). Here, our objectives were to characterize SCAP-EV and to study their effect on microglial cells. We isolated EV from non-activated SCAP and from SCAP activated with TNFα and IFN-γ and characterized them according to their size, EV markers, miRNA and lipid content. Their ability to decrease pro-inflammatory cytokine expression in vitro and ex vivo was also assessed. We showed that the miRNA content was impacted by a pro-inflammatory environment but not their lipid composition. SCAP-EV reduced the expression of pro-inflammatory markers in LPS-activated microglial cells while their effect was limited on mouse spinal cord sections. In conclusion, we were able to isolate EV from SCAP, to show that their miRNA content was impacted by a pro-inflammatory stimulus, and to describe that SCAP-EV and not the protein fraction of conditioned medium could reduce pro-inflammatory marker expression in LPS-activated BV2 cells.

3.
Clin Cancer Res ; 29(20): 4076-4087, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37531234

ABSTRACT

PURPOSE: The EORTC-90111-24111 phase II window study evaluated afatinib versus no preoperative treatment in patients with primary squamous cell carcinoma of the head and neck (HNSCC). We investigated afatinib-induced tumor and microenvironment modifications by comparing pre- and posttreatment tumor biopsies. PATIENTS AND METHODS: Thirty treatment-naïve patients with primary HNSCC were randomized. Twenty-five patients received afatinib for 14 days before surgery (40 mg 1×/day) and 5 patients were attributed to the control arm. Biopsies were taken at work-up and during surgery. Good quality RNA samples were used for omics analyses. The control arm was enlarged by samples coming from our previous similar window study. RESULTS: IHC analyses of afatinib-treated tumor biopsies showed a decrease in pEGFR (P ≤ 0.05) and pERK (P ≤ 0.05); and an increase in CD3+ (P ≤ 0.01) and CD8+ (P ≤ 0.01) T-cell infiltration, and in CD3+ (P ≤ 0.05) T-cell density. RNA sequencing analyses of afatinib-treated tumor samples showed upregulation of inflammatory genes and increased expression scores of signatures predictive of response to programmed cell death protein 1 blockade (P ≤ 0.05). In posttreatment biopsies of afatinib-treated patients, two clusters were observed. Cluster 1 showed a higher expression of markers and gene sets implicated in epithelial-to-mesenchymal transition (EMT) and activation of cancer-associated fibroblasts (CAF) compared with cluster 2 and controls. CONCLUSIONS: Short-term treatment with afatinib in primary HNSCC induces CD3+ and CD8+ tumor infiltration and, in some patients, EMT and CAF activation. These results open perspectives to overcome resistance mechanisms to anti-HER therapy and to potentiate the activity of immune checkpoint inhibitors.

4.
Microbiome ; 11(1): 138, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37408070

ABSTRACT

BACKGROUND: Following solid organ transplantation, tacrolimus (TAC) is an essential drug in the immunosuppressive strategy. Its use constitutes a challenge due to its narrow therapeutic index and its high inter- and intra-pharmacokinetic (PK) variability. As the contribution of the gut microbiota to drug metabolism is now emerging, it might be explored as one of the factors explaining TAC PK variability. Herein, we explored the consequences of TAC administration on the gut microbiota composition. Reciprocally, we studied the contribution of the gut microbiota to TAC PK, using a combination of in vivo and in vitro models. RESULTS: TAC oral administration in mice resulted in compositional alterations of the gut microbiota, namely lower evenness and disturbance in the relative abundance of specific bacterial taxa. Compared to controls, mice with a lower intestinal microbial load due to antibiotics administration exhibit a 33% reduction in TAC whole blood exposure and a lower inter-individual variability. This reduction in TAC levels was strongly correlated with higher expression of the efflux transporter ABCB1 (also known as the p-glycoprotein (P-gp) or the multidrug resistance protein 1 (MDR1)) in the small intestine. Conventionalization of germ-free mice confirmed the ability of the gut microbiota to downregulate ABCB1 expression in a site-specific fashion. The functional inhibition of ABCB1 in vivo by zosuquidar formally established the implication of this efflux transporter in the modulation of TAC PK by the gut microbiota. Furthermore, we showed that polar bacterial metabolites could recapitulate the transcriptional regulation of ABCB1 by the gut microbiota, without affecting its functionality. Finally, whole transcriptome analyses pinpointed, among others, the Constitutive Androstane Receptor (CAR) as a transcription factor likely to mediate the impact of the gut microbiota on ABCB1 transcriptional regulation. CONCLUSIONS: We highlight for the first time how the modulation of ABCB1 expression by bacterial metabolites results in changes in TAC PK, affecting not only blood levels but also the inter-individual variability. More broadly, considering the high number of drugs with unexplained PK variability transported by ABCB1, our work is of clinical importance and paves the way for incorporating the gut microbiota in prediction algorithms for dosage of such drugs. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Tacrolimus , Animals , Mice , Tacrolimus/pharmacokinetics , Cytochrome P-450 CYP3A , Immunosuppressive Agents/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Membrane Transport Proteins
5.
Development ; 150(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37497580

ABSTRACT

Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.


Subject(s)
Axon Guidance , Hepatic Artery , Animals , Mice , Bile Ducts , Morphogenesis , Gene Silencing
6.
Ann Rheum Dis ; 82(12): 1538-1546, 2023 12.
Article in English | MEDLINE | ID: mdl-37507201

ABSTRACT

OBJECTIVES: Transcriptomic profiling of synovial tissue from patients with early, untreated rheumatoid arthritis (RA) was used to explore the ability of unbiased, data-driven approaches to define clinically relevant subgroups. METHODS: RNASeq was performed on 74 samples, with disease activity data collected at inclusion. Principal components analysis (PCA) and unsupervised clustering were used to define patient clusters based on expression of the most variable genes, followed by pathway analysis and inference of relative abundance of immune cell subsets. Histological assessment and multiplex immunofluorescence (for CD45, CD68, CD206) were performed on paraffin sections. RESULTS: PCA on expression of the (n=894) most variable genes across this series did not divide samples into distinct groups, instead yielding a continuum correlated with baseline disease activity. Two patient clusters (PtC1, n=52; PtC2, n=22) were defined based on expression of these genes. PtC1, with significantly higher disease activity and probability of response to methotrexate therapy, showed upregulation of immune system genes; PtC2 showed upregulation of lipid metabolism genes, described to characterise tissue resident or M2-like macrophages. In keeping with these data, M2-like:M1-like macrophage ratios were inversely correlated with disease activity scores and were associated with lower synovial immune infiltration and the presence of thinner, M2-like macrophage-rich synovial lining layers. CONCLUSION: In this large series of early, untreated RA, we show that the synovial transcriptome closely mirrors clinical disease activity and correlates with synovial inflammation. Intriguingly, lower inflammation and disease activity are associated with higher ratios of M2:M1 macrophages, particularly striking in the synovial lining layer. This may point to a protective role for tissue resident macrophages in RA.


Subject(s)
Arthritis, Rheumatoid , Synovitis , Humans , Transcriptome , Synovitis/pathology , Synovial Membrane/metabolism , Inflammation
7.
Aging (Albany NY) ; 15(11): 4576-4599, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37204430

ABSTRACT

BACKGROUND: Premature senescence occurs in adult hepatobiliary diseases and worsens the prognosis through deleterious liver remodeling and hepatic dysfunction. Senescence might also arises in biliary atresia (BA), the first cause of pediatric liver transplantation. Since alternatives to transplantation are needed, our aim was to investigate premature senescence in BA and to assess senotherapies in a preclinical model of biliary cirrhosis. METHODS: BA liver tissues were prospectively obtained at hepatoportoenterostomy (n=5) and liver transplantation (n=30) and compared to controls (n=10). Senescence was investigated through spatial whole transcriptome analysis, SA-ß-gal activity, p16 and p21 expression, γ-H2AX and senescence-associated secretory phenotype (SASP). Human allogenic liver-derived progenitor cells (HALPC) or dasatinib and quercetin (D+Q) were administrated to two-month-old Wistar rats after bile duct ligation (BDL). RESULTS: Advanced premature senescence was evidenced in BA livers from early stage and continued to progress until liver transplantation. Senescence and SASP were predominant in cholangiocytes, but also present in surrounding hepatocytes. HALPC but not D+Q reduced the early marker of senescence p21 in BDL rats and improved biliary injury (serum γGT and Sox9 expression) and hepatocytes mass loss (Hnf4a). CONCLUSIONS: BA livers displayed advanced cellular senescence at diagnosis that continued to progress until liver transplantation. HALPC reduced early senescence and improved liver disease in a preclinical model of BA, providing encouraging preliminary results regarding the use of senotherapies in pediatric biliary cirrhosis.


Subject(s)
Biliary Atresia , Liver Cirrhosis, Biliary , Humans , Rats , Animals , Biliary Atresia/metabolism , Liver Cirrhosis, Biliary/metabolism , Liver Cirrhosis, Biliary/pathology , Rats, Wistar , Liver/metabolism , Hepatocytes/metabolism , Cellular Senescence
8.
Hypertension ; 80(5): 1011-1023, 2023 05.
Article in English | MEDLINE | ID: mdl-36876500

ABSTRACT

BACKGROUND: Preeclampsia is one of the leading causes of maternal mortality worldwide and is strongly associated with long-term morbidity in mothers and newborns. Referred to as one of the deep placentation disorders, insufficient remodeling of the spiral arteries during the first trimester remains a major cause of placental dysfunction. Persisting pulsatile uterine blood flow causes abnormal ischemia/reoxygenation phenomenon in the placenta and stabilizes the HIF-2α (hypoxia-inducible factor-2α) in the cytotrophoblasts. HIF-2α signaling impairs trophoblast differentiation and increases sFLT-1 (soluble fms-like tyrosine kinase-1) secretion, which reduces fetal growth and causes maternal symptoms. This study aims to evaluate the benefits of using PT2385-an oral specific HIF-2α inhibitor-to treat severe placental dysfunction. METHODS: To evaluate its therapeutic potential, PT2385 was first studied in primary human cytotrophoblasts isolated from term placenta and exposed to 2.5% O2 to stabilize HIF-2α. Viability and luciferase assays, RNA sequencing, and immunostaining were used to analyze differentiation and angiogenic factor balance. The ability of PT2385 to mitigate maternal manifestations of preeclampsia was studied in the selective reduced uterine perfusion pressure model performed in Sprague-Dawley rats. RESULTS: In vitro, RNA sequencing analysis and conventional techniques showed that treated cytotrophoblast displayed an enhanced differentiation into syncytiotrophoblasts and normalized angiogenic factor secretion compared with vehicle-treated cells. In the selective reduced uterine perfusion pressure model, PT2385 efficiently decreased sFLT-1 production, thus preventing the onset of hypertension and proteinuria in pregnant dams. CONCLUSIONS: These results highlight HIF-2α as a new player in our understanding of placental dysfunction and support the use of PT2385 to treat severe preeclampsia in humans.


Subject(s)
Pre-Eclampsia , Infant, Newborn , Humans , Rats , Pregnancy , Female , Animals , Placenta/blood supply , Angiogenesis Inducing Agents , Rats, Sprague-Dawley , Placentation , Basic Helix-Loop-Helix Transcription Factors , Hypoxia/complications , Vascular Endothelial Growth Factor Receptor-1/genetics
9.
Cancers (Basel) ; 14(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36230610

ABSTRACT

Papillary thyroid carcinoma (PTC) is the most frequent histological subtype of thyroid cancers (TC), and BRAFV600E genetic alteration is found in 60% of this endocrine cancer. This oncogene is associated with poor prognosis, resistance to radioiodine therapy, and tumor progression. Histological follow-up by anatomo-pathologists revealed that two-thirds of surgically-removed thyroids do not present malignant lesions. Thus, continued fundamental research into the molecular mechanisms of TC downstream of BRAFV600E remains central to better understanding the clinical behavior of these tumors. To study PTC, we used a mouse model in which expression of BRAFV600E was specifically switched on in thyrocytes by doxycycline administration. Upon daily intraperitoneal doxycycline injection, thyroid tissue rapidly acquired histological features mimicking human PTC. Transcriptomic analysis revealed major changes in immune signaling pathways upon BRAFV600E induction. Multiplex immunofluorescence confirmed the abundant recruitment of macrophages, among which a population of LYVE-1+/CD206+/STABILIN-1+ was dramatically increased. By genetically inactivating the gene coding for the scavenger receptor STABILIN-1, we showed an increase of CD8+ T cells in this in situ BRAFV600E-dependent TC. Lastly, we demonstrated the presence of CD206+/STABILIN-1+ macrophages in human thyroid pathologies. Altogether, we revealed the recruitment of immunosuppressive STABILIN-1 macrophages in a PTC mouse model and the interest to further study this macrophage subpopulation in human thyroid tissues.

10.
Aliment Pharmacol Ther ; 56(6): 1055-1070, 2022 09.
Article in English | MEDLINE | ID: mdl-35919965

ABSTRACT

BACKGROUND: Intestinal T cells are key in gut barrier function. Their role in early stages of alcohol-associated liver disease (ALD) remain unknown. AIM: To explore the links between intestinal T cells, microbial translocation and ALD METHODS: Patients with alcohol use disorder (AUD) following a rehabilitation programme were compared to subjects with non-alcoholic fatty liver disease (NAFLD) and healthy controls. Clinical and laboratory data (liver stiffness, controlled attenuation parameter, AST, ALT, K18-M65) served to identify AUD patients with isolated steatosis (minimal liver disease) or steatohepatitis/fibrosis (ALD). Serum microbial translocation markers were measured by ELISA, duodenal and plasma levels of sphingolipids by targeted LC-MS. T lymphocytes in duodenal biopsies were characterised by immunohistochemistry, flow cytometry and RNA sequencing on FACS-sorted cells. Mechanisms for T-cell alterations were assessed in vitro. RESULTS: Patients with ALD, but not those with minimal liver disease, showed reduced numbers of duodenal CD8+ T resident memory (TRM) cells compared to controls or patients with NAFLD. TRM transcriptomic analysis, in vitro analyses and pharmacological inhibition of cathepsin B confirmed TRM apoptosis driven by lysosomal membrane permeabilisation and cathepsin B release into the cytosol. Altered lipid metabolism and increased duodenal and plasma sphingolipids correlated with apoptosis. Dihydroceramide dose-dependently reduced viability of TRM. Duodenal TRM phenotypic changes, apoptosis and transcriptomic alterations correlated with increased levels of microbial translocation markers. Short-term abstinence did not reverse TRM cell death in patients with ALD. CONCLUSIONS: Duodenal CD8+ TRM apoptosis related to functional changes in lysosomes and lipid metabolism points to impaired gut adaptive immunity specifically in patients with AUD who developed early ALD.


Subject(s)
Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Apoptosis , Biomarkers/analysis , CD8-Positive T-Lymphocytes/chemistry , Cathepsin B , Humans , Sphingolipids
11.
Biomedicines ; 10(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35453506

ABSTRACT

Papillary thyroid cancer (PTC) is the most common endocrine malignancy for which diagnosis and recurrences still challenge clinicians. New perspectives to overcome these issues could come from the study of extracellular vesicle (EV) populations and content. Here, we aimed to elucidate the heterogeneity of EVs circulating in the tumor and the changes in their microRNA content during cancer progression. Using a mouse model expressing BRAFV600E, we isolated and characterized EVs from thyroid tissue by ultracentrifugations and elucidated their microRNA content by small RNA sequencing. The cellular origin of EVs was investigated by ExoView and that of deregulated EV-microRNA by qPCR on FACS-sorted cell populations. We found that PTC released more EVs bearing epithelial and immune markers, as compared to the healthy thyroid, so that changes in EV-microRNAs abundance were mainly due to their deregulated expression in thyrocytes. Altogether, our work provides a full description of in vivo-derived EVs produced by, and within, normal and cancerous thyroid. We elucidated the global EV-microRNAs signature, the dynamic loading of microRNAs in EVs upon BRAFV600E induction, and their cellular origin. Finally, we propose that thyroid tumor-derived EV-microRNAs could support the establishment of a permissive immune microenvironment.

12.
Cancers (Basel) ; 14(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35205751

ABSTRACT

Genome-wide loss of DNA methylation is commonly observed in human cancers, but its impact on the tumor transcriptome remains ill-defined. Previous studies demonstrated that this epigenetic alteration causes aberrant activation of a germline-specific gene expression program. Here, we examined if DNA hypomethylation in tumors also leads to de-repression of gene clusters with other tissue specificities. To this end, we explored transcriptomic and methylomic datasets from human lung adenocarcinoma (LUAD) cell lines, normal lung, and lung alveolar type II cells, considered as the origin of LUAD. Interestingly, DNA demethylation in LUAD cell lines was associated with activation of not only germline-specific (CG) genes, but also gene clusters displaying specific expression in the gastrointestinal tract (GI), or in stratified epithelia (SE). Consistently, genes from all three clusters showed highly specific patterns of promoter methylation among normal tissues and cell types, and were generally sensitive to induction by a DNA demethylating agent. Analysis of TCGA datasets confirmed that demethylation and activation of CG, GI and SE genes also occurs in vivo in LUAD tumor tissues, in association with global genome hypomethylation. For genes of the GI cluster, we demonstrated that HNF4A is a necessary factor for transcriptional activation following promoter demethylation. Interestingly, expression of several SE genes, in particular FAM83A, correlated with both tumor grade and reduced patient survival. Together, our study uncovers novel cell-type specific gene clusters that become aberrantly activated in LUAD tumors in association with genome-wide hypomethylation.

13.
PLoS Comput Biol ; 18(2): e1009653, 2022 02.
Article in English | MEDLINE | ID: mdl-35180209

ABSTRACT

Biliary ducts collect bile from liver lobules, the smallest functional and anatomical units of liver, and carry it to the gallbladder. Disruptions in this process caused by defective embryonic development, or through ductal reaction in liver disease have a major impact on life quality and survival of patients. A deep understanding of the processes underlying bile duct lumen formation is crucial to identify intervention points to avoid or treat the appearance of defective bile ducts. Several hypotheses have been proposed to characterize the biophysical mechanisms driving initial bile duct lumen formation during embryogenesis. Here, guided by the quantification of morphological features and expression of genes in bile ducts from embryonic mouse liver, we sharpened these hypotheses and collected data to develop a high resolution individual cell-based computational model that enables to test alternative hypotheses in silico. This model permits realistic simulations of tissue and cell mechanics at sub-cellular scale. Our simulations suggest that successful bile duct lumen formation requires a simultaneous contribution of directed cell division of cholangiocytes, local osmotic effects generated by salt excretion in the lumen, and temporally-controlled differentiation of hepatoblasts to cholangiocytes, with apical constriction of cholangiocytes only moderately affecting luminal size.


Subject(s)
Bile Ducts/metabolism , Models, Biological , Animals , Epithelial Cells/metabolism , Mice , Morphogenesis
14.
Biomolecules ; 11(10)2021 10 06.
Article in English | MEDLINE | ID: mdl-34680104

ABSTRACT

An inappropriate response to progestogens in the human endometrium can result in fertility issues and jeopardize progestin-based treatments against pathologies such as endometriosis. PGRMC1 can mediate progesterone response in the breast and ovaries but its endometrial functions remain unknown. AG-205 is an alleged PGRMC1 inhibitor but its specificity was recently questioned. We added AG-205 in the cultures of two endometrial cell lines and performed a transcriptomic comparison. AG-205 significantly increased expression of genes coding enzymes of the cholesterol biosynthetic pathway or of steroidogenesis. However, these observations were not reproduced with cells transfected with siRNA against PGRMC1 or its related proteins (MAPRs). Furthermore, AG-205 retained its ability to increase expression of selected target genes even when expression of PGRMC1 or all MAPRs was concomitantly downregulated, indicating that neither PGRMC1 nor any MAPR is required to mediate AG-205 effect. In conclusion, although AG-205 has attractive effects encouraging its use to develop therapeutic strategies, for instance against breast cancer, our study delivers two important warning messages. First, AG-205 is not specific for PGRMC1 or other MAPRs and its mechanisms of action remain unclear. Second, due to its effects on genes involved in steroidogenesis, its use may increase the risk for endometrial pathologies resulting from imbalanced hormones concentrations.


Subject(s)
Cholesterol/biosynthesis , Endometrium/metabolism , Lipogenesis/genetics , Membrane Proteins/genetics , Progesterone/genetics , Receptors, Progesterone/genetics , Breast/metabolism , Breast/pathology , Cell Line , Cholesterol/genetics , Endometriosis/genetics , Endometriosis/metabolism , Endometriosis/pathology , Endometrium/drug effects , Endometrium/growth & development , Female , Gene Expression Regulation/drug effects , Humans , Indoles/pharmacology , Lipogenesis/drug effects , Membrane Proteins/antagonists & inhibitors , Ovary/metabolism , Ovary/pathology , RNA, Small Interfering/pharmacology , Receptors, Progesterone/antagonists & inhibitors , Transcriptome/genetics
15.
Sci Rep ; 11(1): 17346, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462486

ABSTRACT

Tumor development involves alterations in DNA methylation patterns, which include both gains (hypermethylation) and losses (hypomethylation) in different genomic regions. The mechanisms underlying these two opposite, yet co-existing, alterations in tumors remain unclear. While studying the human MAGEA6/GABRA3 gene locus, we observed that DNA hypomethylation in tumor cells can lead to the activation of a long transcript (CT-GABRA3) that overlaps downstream promoters (GABRQ and GABRA3) and triggers their hypermethylation. Overlapped promoters displayed increases in H3K36me3, a histone mark deposited during transcriptional elongation and known to stimulate de novo DNA methylation. Consistent with such a processive mechanism, increases in H3K36me3 and DNA methylation were observed over the entire region covered by the CT-GABRA3 overlapping transcript. Importantly, experimental induction of CT-GABRA3 by depletion of DNMT1 DNA methyltransferase, resulted in a similar pattern of regional DNA hypermethylation. Bioinformatics analyses in lung cancer datasets identified other genomic loci displaying this process of coupled DNA hypo/hypermethylation, and some of these included tumor suppressor genes, e.g. RERG and PTPRO. Together, our work reveals that focal DNA hypomethylation in tumors can indirectly contribute to hypermethylation of nearby promoters through activation of overlapping transcription, and establishes therefore an unsuspected connection between these two opposite epigenetic alterations.


Subject(s)
Adenocarcinoma/genetics , DNA Methylation , Lung Neoplasms/genetics , Neoplasms/genetics , Promoter Regions, Genetic , Antigens, Neoplasm/genetics , Base Sequence , Cell Line, Tumor , Cell Proliferation , Computational Biology/methods , CpG Islands , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Data Mining , Epigenomics , Gene Expression Regulation, Neoplastic , Genomics , Histones/chemistry , Humans , Male , Melanoma/genetics , Melanoma/metabolism , Neoplasm Proteins/genetics , RNA-Seq , Receptors, GABA-A/genetics
16.
Cell Rep ; 35(9): 109202, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34077729

ABSTRACT

Metabolic plasticity in cancer cells makes use of metabolism-targeting agents very challenging. Drug-induced metabolic rewiring may, however, uncover vulnerabilities that can be exploited. We report that resistance to glycolysis inhibitor 3-bromopyruvate (3-BrPA) arises from DNA methylation in treated cancer cells and subsequent silencing of the monocarboxylate transporter MCT1. We observe that, unexpectedly, 3-BrPA-resistant cancer cells mostly rely on glycolysis to sustain their growth, with MCT4 as an essential player to support lactate flux. This shift makes cancer cells particularly suited to adapt to hypoxic conditions and resist OXPHOS inhibitors and anti-proliferative chemotherapy. In contrast, blockade of MCT4 activity in 3-BrPA-exposed cancer cells with diclofenac or genetic knockout, inhibits growth of derived spheroids and tumors in mice. This study supports a potential mode of collateral lethality according to which metabolic adaptation of tumor cells to a first-line therapy makes them more responsive to a second-line treatment.


Subject(s)
DNA Methylation/genetics , Monocarboxylic Acid Transporters/antagonists & inhibitors , Monocarboxylic Acid Transporters/genetics , Muscle Proteins/antagonists & inhibitors , Pyruvates/pharmacology , Symporters/genetics , Animals , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Respiration/drug effects , Down-Regulation/drug effects , Down-Regulation/genetics , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Glycolysis/drug effects , Humans , Lactic Acid/metabolism , Mice , Models, Biological , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Phenotype , Promoter Regions, Genetic/genetics , Symporters/metabolism
17.
Hepatology ; 74(3): 1445-1460, 2021 09.
Article in English | MEDLINE | ID: mdl-33768568

ABSTRACT

BACKGROUND AND AIMS: Earlier diagnosis and treatment of intrahepatic cholangiocarcinoma (iCCA) are necessary to improve therapy, yet limited information is available about initiation and evolution of iCCA precursor lesions. Therefore, there is a need to identify mechanisms driving formation of precancerous lesions and their progression toward invasive tumors using experimental models that faithfully recapitulate human tumorigenesis. APPROACH AND RESULTS: To this end, we generated a mouse model which combines cholangiocyte-specific expression of KrasG12D with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammation to mimic iCCA development in patients with cholangitis. Histological and transcriptomic analyses of the mouse precursor lesions and iCCA were performed and compared with human analyses. The function of genes overexpressed during tumorigenesis was investigated in human cell lines. We found that mice expressing KrasG12D in cholangiocytes and fed a DDC diet developed cholangitis, ductular proliferations, intraductal papillary neoplasms of bile ducts (IPNBs), and, eventually, iCCAs. The histology of mouse and human IPNBs was similar, and mouse iCCAs displayed histological characteristics of human mucin-producing, large-duct-type iCCA. Signaling pathways activated in human iCCA were also activated in mice. The identification of transition zones between IPNB and iCCA on tissue sections, combined with RNA-sequencing analyses of the lesions supported that iCCAs derive from IPNBs. We further provide evidence that tensin-4 (TNS4), which is stimulated by KRASG12D and SRY-related HMG box transcription factor 17, promotes tumor progression. CONCLUSIONS: We developed a mouse model that faithfully recapitulates human iCCA tumorigenesis and identified a gene cascade which involves TNS4 and promotes tumor progression.


Subject(s)
Bile Duct Neoplasms/genetics , Carcinoma, Ductal/genetics , Cholangiocarcinoma/genetics , Disease Models, Animal , Liver Neoplasms, Experimental/genetics , Mice , Tensins/genetics , Animals , Bile Duct Neoplasms/chemically induced , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Carcinoma, Ductal/chemically induced , Carcinoma, Ductal/metabolism , Carcinoma, Ductal/pathology , Carcinoma, Papillary/chemically induced , Carcinoma, Papillary/genetics , Carcinoma, Papillary/metabolism , Carcinoma, Papillary/pathology , Cholangiocarcinoma/chemically induced , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangitis/chemically induced , Cholangitis/complications , HMGB Proteins/genetics , HMGB Proteins/metabolism , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/toxicity , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Signal Transduction , Tensins/metabolism
18.
Cancer Res ; 81(10): 2679-2689, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33602788

ABSTRACT

Pancreatic acinar cells are a cell type of origin for pancreatic cancer that become progressively less sensitive to tumorigenesis induced by oncogenic Kras mutations after birth. This sensitivity is increased when Kras mutations are combined with pancreatitis. Molecular mechanisms underlying these observations are still largely unknown. To identify these mechanisms, we generated the first CRISPR-edited mouse models that enable detection of wild-type and mutant KRAS proteins in vivo. Analysis of these mouse models revealed that more than 75% of adult acinar cells are devoid of detectable KRAS protein. In the 25% of acinar cells expressing KRAS protein, transcriptomic analysis highlighted a slight upregulation of the RAS and MAPK pathways. However, at the protein level, only marginal pancreatic expression of essential KRAS effectors, including C-RAF, was observed. The expression of KRAS and its effectors gradually decreased after birth. The low sensitivity of adult acinar cells to Kras mutations resulted from low expression of KRAS and its effectors and the subsequent lack of activation of RAS/MAPK pathways. Pancreatitis triggered expression of KRAS and its effectors as well as subsequent activation of downstream signaling; this induction required the activity of EGFR. Finally, expression of C-RAF in adult pancreas was required for pancreatic tumorigenesis. In conclusion, our study reveals that control of the expression of KRAS and its effectors regulates the sensitivity of acinar cells to transformation by oncogenic Kras mutations. SIGNIFICANCE: This study generates new mouse models to study regulation of KRAS during pancreatic tumorigenesis and highlights a novel mechanism through which pancreatitis sensitizes acinar cells to Kras mutations.


Subject(s)
Acinar Cells/pathology , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Mutation , Pancreatic Neoplasms/pathology , Pancreatitis/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Acinar Cells/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , CRISPR-Cas Systems , Cell Proliferation , Disease Models, Animal , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Humans , Male , Mice , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/metabolism , Pancreatitis/etiology , Pancreatitis/metabolism , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
RNA ; 27(1): 106-121, 2021 01.
Article in English | MEDLINE | ID: mdl-33127860

ABSTRACT

Telomeric repeat-containing RNA (TERRA) molecules play important roles at telomeres, from heterochromatin regulation to telomerase activity control. In human cells, TERRA is transcribed from subtelomeric promoters located on most chromosome ends and associates with telomeres. The origin of mouse TERRA molecules is, however, unclear, as transcription from the pseudoautosomal PAR locus was recently suggested to account for the vast majority of TERRA in embryonic stem cells (ESC). Here, we confirm the production of TERRA from both the chromosome 18q telomere and the PAR locus in mouse embryonic fibroblasts, ESC, and various mouse cancer and immortalized cell lines, and we identify two novel sources of TERRA on mouse chromosome 2 and X. Using various approaches, we show that PAR-TERRA molecules account for the majority of TERRA transcripts, displaying an increase of two to four orders of magnitude compared to the telomeric 18q transcript. Finally, we present a SILAC-based pull-down screen revealing a large overlap between TERRA-interacting proteins in human and mouse cells, including PRC2 complex subunits, chromatin remodeling factors, DNA replication proteins, Aurora kinases, shelterin complex subunits, Bloom helicase, Coilin, and paraspeckle proteins. Hence, despite originating from distinct genomic regions, mouse and human TERRA are likely to play similar functions in cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/genetics , RNA, Messenger/genetics , Telomere/chemistry , Transcriptome , Animals , Aurora Kinases/genetics , Aurora Kinases/metabolism , Cell Line, Tumor , Chromosomes, Mammalian/chemistry , Chromosomes, Mammalian/metabolism , Computational Biology/methods , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Regulatory Networks , Granulocyte Precursor Cells/cytology , Granulocyte Precursor Cells/metabolism , HeLa Cells , Humans , Mice , Monocytes/cytology , Monocytes/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neurons/cytology , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Messenger/classification , RNA, Messenger/metabolism , RNA-Binding Proteins/classification , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , Shelterin Complex , Telomere/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism
20.
Cytogenet Genome Res ; 159(1): 12-18, 2019.
Article in English | MEDLINE | ID: mdl-31593956

ABSTRACT

The human genome harbors many duplicated segments, which sometimes show very high sequence identity. This may complicate assignment during genome assembly. One such example is in Xq28, where the arrangement of 2 recently duplicated segments varies between genome assembly versions. The duplicated segments comprise highly similar genes, including MAGEA3 and MAGEA6, which display specific expression in testicular germline cells, and also become aberrantly activated in a variety of tumors. Recently, a new gene was identified, CT-GABRA3, the transcription of which initiates inside the segmental duplication but extends far outside. According to the latest genome annotation, CT- GABRA3 starts near MAGEA3, with which it shares a bidirectional promoter. In an earlier annotation, however, the duplicated segment was positioned in the opposite orientation, and CT-GABRA3 was instead coupled with MAGEA6. To resolve this discrepancy, and based on the contention that genes connected by a bidirectional promoter are almost always co-expressed, we decided to compare the expression profiles of CT-GABRA3, MAGEA3, and MAGEA6. We found that in tumor tissues and cell lines of different origins, the expression of CT-GABRA3 was better correlated with that of MAGEA6. Moreover, in a cellular model of experimental induction with a DNA demethylation agent, activation CT-GABRA3 was associated with that of MAGEA6, but not with that of MAGEA3. Together these results support a connection between CT-GABRA3 and MAGEA6 and illustrate how promoter-sharing genes can be exploited to resolve genome assembly uncertainties.


Subject(s)
Antigens, Neoplasm/genetics , Chromosomes, Human, X/genetics , Neoplasm Proteins/genetics , Promoter Regions, Genetic/genetics , Receptors, GABA-A/genetics , Segmental Duplications, Genomic/genetics , Antigens, Neoplasm/metabolism , Epigenesis, Genetic/genetics , Gene Duplication/genetics , Gene Expression Regulation, Neoplastic/genetics , Genome, Human/genetics , Humans , Neoplasm Proteins/metabolism , Neoplasms/genetics , Neoplasms/pathology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...