Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 18(1): 75, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30866940

ABSTRACT

BACKGROUND: Primaquine is effective against the latent liver stage of Plasmodium vivax. Eliminating the latent liver stage of P. vivax is one of the necessary conditions to achieve the goal of malaria elimination in Lao People's Democratic Republic (PDR) by 2030. However, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency are at risk of haemolysis when ingesting primaquine. The aim of this study was to detect the prevalence of the G6PD Viangchan variant, which is said to be common in Lao PDR and which can result in severe haemolysis in patients exposed to primaquine. METHODS: Blood samples were collected from villagers in three malaria endemic provinces: Champasak and Savannakhet in the south, and Phongsaly in the north. Each blood sample was semi-quantitatively assayed for G6PD enzyme activity using the G6PD Assay Kit-WST Lyophilized (DOJINDO Laboratories, Japan). Blood samples that were found to be G6PD deficient were sequenced to detect G6PD Viangchan mutation. RESULTS: In total, 2043 blood samples were collected from Phongsaly (n = 426, 20.9%), Savannakhet (n = 924, 45.2%), and Champasak (n = 693, 33.9%) provinces in Lao PDR from 2016 to 2017. Of these, 964 (47.2%) were taken from male villagers and 1079 (52.8%) were taken from female villagers. G6PD Viangchan mutation was not detected in Phongsaly province in this study. In Savannakhet province, 48 of the 924 samples (45 males, 3 females) had the G6PD Viangchan mutation (n = 48, 5.2%). In Champasak province, 42 of the 693 samples (18 males, 24 females) had the G6PD Viangchan mutation (n = 42, 6.1%). CONCLUSIONS: G6PD Viangchan variant, which can cause severe haemolysis in the carrier when exposed to primaquine, was detected among 6.1% of the villagers in Champasak and 5.2% in Savannakhet but not in Phongsaly in this study. G6PD Viangchan variant might be common in the south of Laos but not so in the north. In the north, other G6PD deficiency variants might be more prevalent. However, in order not to overlook anyone and ensure a safe primaquine therapy for people living in malaria endemic areas in Lao PDR, G6PD testing is necessary.


Subject(s)
Disease Eradication/methods , Genotype , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase/genetics , Malaria, Vivax/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Glucosephosphate Dehydrogenase/analysis , Hemolysis , Humans , Infant , Infant, Newborn , Laos/epidemiology , Malaria, Vivax/prevention & control , Male , Middle Aged , Prevalence , Primaquine/adverse effects , Rural Population , Sequence Analysis, DNA , Young Adult
2.
Malar J ; 17(1): 483, 2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30587196

ABSTRACT

BACKGROUND: The emergence and transnational spread of artemisinin resistance in Plasmodium falciparum in the Greater Mekong Sub-region (GMS) is a serious threat to malaria elimination in the region and could present a threat to malaria control in Africa. Recently, the Lao Government adopted the goal of malaria elimination by 2030, for which monitoring of artemisinin-resistant malaria within the country is indispensable. This study's objectives were to assess the distribution of k13 mutations in Laos. METHODS: Plasmodium falciparum isolates (n = 1151) were collected from five southern provinces in Laos between 2015 and 2016, and three isolates from the northernmost province bordering China in 2017. Polymorphisms of the k13 gene and two flanking regions were analysed to estimate relationship among the isolates. RESULTS: In the five southern provinces, overall 55.5% of the isolates possessed artemisinin-resistant mutations of the k13 gene (C580Y, P574L, R539T, Y493H). The C580Y was the predominant mutation (87.2%). The frequencies of the k13 mutations were heterogeneous in the five southern provinces, but with a clear tendency showing the highest frequency in the south (72.5%) and to a lower degree when moving northward (28.0%). The three isolates from the Lao-Chinese border also possessed the C580Y mutation. Analysis of the flanking loci demonstrated that these three isolates were genetically very close to resistant strains originating from western Cambodia. CONCLUSIONS: Artemisinin resistance was observed to be rapidly increasing and spreading northwards through Laos and has now reached the Chinese border. The Lao and Chinese governments, as well as the international community, should make dedicated efforts to contain the spread of k13 mutations within Laos and in the GMS.


Subject(s)
Antiprotozoal Agents/pharmacology , Artemisinins/pharmacology , Drug Resistance/genetics , Plasmodium falciparum/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Laos , Mutation , Plasmodium falciparum/drug effects , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...