Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 303
Filter
1.
Am Soc Clin Oncol Educ Book ; 44(3): e431766, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38828973

ABSTRACT

Antibody-drug conjugates (ADCs) have reshaped the cancer treatment landscape across a variety of different tumor types. ADCs' peculiar pharmacologic design combines the cytotoxic properties of chemotherapeutic agents with the selectivity of targeted therapies. At present, the approval of many ADCs used in clinical practice has not always been biomarker-driven. Indeed, predicting ADCs' activity and toxicity through the demonstration of specific biomarkers is still a great unmet need, and the identification of patients who can derive significant benefit from treatment with ADCs may often be uncertain. With the lack of robust predictive biomarkers to anticipate primary, intrinsic resistance to ADCs and no consolidated biomarkers to aid in the early identification of treatment resistance (ie, acquired resistance), the determination of precise biologic mechanisms of ADC activity and safety becomes priority in the quest for better patient-centric outcomes. Of great relevance, whether the target antigen expression is a determinant of ADCs' primary activity is still to be clarified, and available data remain quite controversial. Antigen expression assessment is typically performed on tissue biopsy, hence only providing information on a specific tumor site, therefore unable to capture heterogeneous patterns of tumor antigen expression. Quantifying the expression of the target antigen across all tumor sites would help better understand tumor heterogeneity, whereas molecularly characterizing tumor-intrinsic features over time might provide information on resistance mechanisms. In addition, toxicity can represent a critical concern, since most ADCs have a safety profile that resembles that of chemotherapies, with often unique adverse events requiring special management, possibly because of the differential in pharmacokinetics between the small-molecule agent versus payload of a similar class (eg, deruxtecan conjugate-related interstitial lung disease). As such, the identification of robust predictive biomarkers of safety and activity of ADCs has the potential to improve patient selection and enrich the population of patients most likely to derive a substantial clinical benefit, especially in those disease settings where different ADCs happen to be approved in competing clinical indications, with undefined biomarkers to make precise decision making and unclear data on how to sequence ADCs. At this point, the identification of clinically actionable biomarkers in the space of ADCs remains a top research priority.


Subject(s)
Biomarkers, Tumor , Immunoconjugates , Neoplasms , Humans , Immunoconjugates/therapeutic use , Immunoconjugates/pharmacology , Immunoconjugates/pharmacokinetics , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy , Drug Resistance, Neoplasm , Treatment Outcome
2.
Nat Med ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824244

ABSTRACT

Inhibition of histone lysine acetyltransferases (KATs) KAT6A and KAT6B has shown antitumor activity in estrogen receptor-positive (ER+) breast cancer preclinical models. PF-07248144 is a selective catalytic inhibitor of KAT6A and KAT6B. In the present study, we report the safety, pharmacokinetics (PK), pharmacodynamics, efficacy and biomarker results from the first-in-human, phase 1 dose escalation and dose expansion study (n = 107) of PF-07248144 monotherapy and fulvestrant combination in heavily pretreated ER+ human epidermal growth factor receptor-negative (HER2-) metastatic breast cancer (mBC). The primary objectives of assessing the safety and tolerability and determining the recommended dose for expansion of PF-07248144, as monotherapy and in combination with fulvestrant, were met. Secondary endpoints included characterization of PK and evaluation of antitumor activity, including objective response rate (ORR) and progression-free survival (PFS). Common treatment-related adverse events (any grade; grades 3-4) included dysgeusia (83.2%, 0%), neutropenia (59.8%, 35.5%) and anemia (48.6%, 13.1%). Exposure was approximately dose proportional. Antitumor activity was observed as monotherapy. For the PF-07248144-fulvestrant combination (n = 43), the ORR (95% confidence interval (CI)) was 30.2% (95% CI = 17.2-46.1%) and the median PFS was 10.7 (5.3-not evaluable) months. PF-07248144 demonstrated a tolerable safety profile and durable antitumor activity in heavily pretreated ER+HER2- mBC. These findings establish KAT6A and KAT6B as druggable cancer targets, provide clinical proof of concept and reveal a potential avenue to treat mBC. clinicaltrial.gov registration: NCT04606446 .

3.
Onco Targets Ther ; 17: 267-280, 2024.
Article in English | MEDLINE | ID: mdl-38567193

ABSTRACT

Background: In patients with advanced biliary tract cancer (BTC), first-line chemotherapy plus immunotherapy has improved outcomes; however, second-line options that reflect the disease's molecular heterogeneity are still needed. One emerging target is MDM2, amplified in ~5-8% of BTC cases. Methods: This is a subset analysis of two ongoing Phase Ia/Ib trials assessing patients treated with brigimadlin (BI 907828; a highly potent, oral MDM2-p53 antagonist) ± ezabenlimab (PD-1 inhibitor) ± BI 754111 (anti-LAG-3; n = 1). Results: Results from 12 patients with BTC are shown (monotherapy: n = 6/combination: n = 6). Six patients achieved partial response (monotherapy: n = 2/combination: n = 4), four had stable disease; responses were durable. Brigimadlin had a manageable safety profile. Seven patients had dose reductions due to adverse events, but no treatment-related adverse events led to treatment discontinuation. Conclusion: Brigimadlin demonstrated anti-tumor activity in patients with advanced MDM2-amplified BTC, and warrants further investigation.


Biliary tract carcinoma (BTC) is a cancer that affects the bile ducts which are part of the digestive system. Usually, the first treatment for advanced BTC (ie cannot be removed surgically and/or has spread) is chemotherapy in combination with immunotherapy. However, if chemotherapy does not work, or stops working, there are few treatment options available in second-line. Accordingly, intensive research is ongoing to try and find effective drugs. One potential medicine, called brigimadlin (or BI 907828), is a tablet that activates a molecule in tumor cells called p53. The normal function of p53 is to kill cells when they first start to become cancerous. However, if p53 is turned off by genetic mutations, or other mechanisms, then cancer can develop. Although p53 is rarely mutated in BTC tumors, it is inactivated by another molecule called MDM2 which is usually present at abnormally high levels in BTC. Brigimadlin prevents interaction between MDM2 and p53. This activates p53 and causes the cancer to die. Two clinical trials are currently assessing brigimadlin in a range of cancers, including BTC, with the aim of identifying a safe dose that can be examined in more detail in larger trials. So far, 12 patients with BTC have been treated. The patients' tumors significantly shrank in six of these patients and remained stable in a further four patients. Side effects were as expected and could be tolerated by pausing treatment or lowering the dose. These results show that brigimadlin should be tested further in patients with advanced BTC.

4.
Nat Cancer ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355777

ABSTRACT

We report the results of 24 women, 50% (N = 12) with hormone receptor-positive breast cancer and 50% (N = 12) with advanced triple-negative breast cancer, treated with entinostat + nivolumab + ipilimumab from the dose escalation (N = 6) and expansion cohort (N = 18) of ETCTN-9844 ( NCT02453620 ). The primary endpoint was safety. Secondary endpoints were overall response rate, clinical benefit rate, progression-free survival and change in tumor CD8:FoxP3 ratio. There were no dose-limiting toxicities. Among evaluable participants (N = 20), the overall response rate was 25% (N = 5), with 40% (N = 4) in triple-negative breast cancer and 10% (N = 1) in hormone receptor-positive breast cancer. The clinical benefit rate was 40% (N = 8), and progression-free survival at 6 months was 50%. Exploratory analyses revealed that changes in myeloid cells may contribute to responses; however, no correlation was noted between changes in CD8:FoxP3 ratio, PD-L1 status and tumor mutational burden and response. These findings support further investigation of this treatment in a phase II trial.

5.
JCO Precis Oncol ; 8: e2300289, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38412387

ABSTRACT

PURPOSE: Cell-free circulating tumor DNA (ctDNA) has shown its potential as a quantitative biomarker for longitudinal monitoring of response to anticancer therapies. However, ctDNA dynamics have not been studied in patients with heavily pretreated, advanced solid tumors, for whom therapeutic responses can be weak. We investigated whether changes in ctDNA could predict clinical outcomes in such a cohort treated with combined poly(ADP-ribose) polymerase/vascular endothelial growth factor receptor inhibitor therapy. MATERIALS AND METHODS: Patients with metastatic pancreatic ductal adenocarcinoma (PDAC), triple-negative breast cancer (TNBC), small-cell lung cancer (SCLC), or non-small-cell lung cancer (NSCLC) received up to 7 days of cediranib 30 mg orally once daily monotherapy lead-in followed by addition of olaparib 200 mg orally twice daily. Patients had progressed on a median of three previous lines of therapy. Plasma samples were collected before and after cediranib monotherapy lead-in and on combination therapy at 7 days, 28 days, and every 28 days thereafter. ctDNA was quantified from plasma samples using a multigene mutation-based assay. Radiographic assessment was performed every 8 weeks. RESULTS: ctDNA measurements were evaluable in 63 patients. The median baseline ctDNA variant allele fractions (VAFs) were 20%, 28%, 27%, and 34% for PDAC, TNBC, SCLC, and NSCLC, respectively. No association was observed between baseline VAF and radiographic response, progression-free survival, or overall survival (OS). Similarly, no association was found between ctDNA decline and radiographic response or survival. However, an increase in ctDNA at 56 days of combination therapy was associated with disease progression and inferior OS in a landmark analysis. CONCLUSION: ctDNA levels or dynamics did not correlate with radiographic response or survival outcomes in patients with advanced metastatic malignancies treated with olaparib and cediranib.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Pancreatic Neoplasms , Triple Negative Breast Neoplasms , Humans , Circulating Tumor DNA/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Poly(ADP-ribose) Polymerases/therapeutic use , Vascular Endothelial Growth Factor A/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Biomarkers, Tumor/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics
6.
Nat Commun ; 15(1): 466, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212321

ABSTRACT

Approved antibody-drug conjugates (ADCs) for HER2-positive breast cancer include trastuzumab emtansine and trastuzumab deruxtecan. To develop a differentiated HER2 ADC, we chose an antibody that does not compete with trastuzumab or pertuzumab for binding, conjugated to a reduced potency PBD (pyrrolobenzodiazepine) dimer payload. PBDs are potent cytotoxic agents that alkylate and cross-link DNA. In our study, the PBD dimer is modified to alkylate, but not cross-link DNA. This HER2 ADC, DHES0815A, demonstrates in vivo efficacy in models of HER2-positive and HER2-low cancers and is well-tolerated in cynomolgus monkey safety studies. Mechanisms of action include induction of DNA damage and apoptosis, activity in non-dividing cells, and bystander activity. A dose-escalation study (ClinicalTrials.gov: NCT03451162) in patients with HER2-positive metastatic breast cancer, with the primary objective of evaluating the safety and tolerability of DHES0815A and secondary objectives of characterizing the pharmacokinetics, objective response rate, duration of response, and formation of anti-DHES0815A antibodies, is reported herein. Despite early signs of anti-tumor activity, patients at higher doses develop persistent, non-resolvable dermal, ocular, and pulmonary toxicities, which led to early termination of the phase 1 trial.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Agents , Benzodiazepines , Breast Neoplasms , Immunoconjugates , Humans , Animals , Female , Breast Neoplasms/genetics , Macaca fascicularis/genetics , Receptor, ErbB-2/metabolism , Trastuzumab/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , DNA
7.
Oncologist ; 29(1): e131-e140, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37531083

ABSTRACT

BACKGROUND: This study aimed to evaluate the safety, pharmacokinetics (PKs), and preliminary activity of LY3405105, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), in patients with advanced solid tumors. MATERIALS AND METHODS: LY3405105 monotherapy was given once daily (QD; part A1) or thrice weekly (TIW; part A2) starting at 1 and 2 mg orally, respectively, and escalated per a Bayesian design in adult patients. The primary endpoint was safety, and secondary endpoints included PKs and antitumor activity. RESULTS: Fifty-four patients were enrolled: 43 in part A1 and 11 in part A2. Seven patients had dose-limiting toxicities, all in part A1 (45 mg: n = 3; 35 mg: n = 3; 25 mg: n = 1). Thirty-five patients (64.8%) reported at least one treatment-related adverse event (TRAE). TRAEs (≥10%) were diarrhea, nausea, fatigue, vomiting, abdominal pain, anemia, asthenia, and decreased platelet count. QD dosing showed sustained exposure with less peak-trough fluctuation compared to TIW dosing. Median time to maximum concentration was 1-2 hours and half-life was 15-19 hours. CDK7-target occupancy in skin and peripheral blood on day 15 was dose-dependent and reached near maximal occupancy of 75% at ≥15 mg QD. The maximum tolerated dose (MTD) was 20 mg QD. Twelve patients in part A1 (27.9%) and 5 patients in part A2 (45.5%) had a best overall response of stable disease. No complete response or partial response was observed. CONCLUSION: The MTD of LY3405105 monotherapy was 20 mg QD. The most common toxicities were gastrointestinal adverse events, myelosuppression, fatigue, and asthenia. Limited clinical activity was observed in this phase I trial, and there are no plans for further development. CLINICALTRIALS.GOV IDENTIFIER: NCT03770494.


Subject(s)
Antineoplastic Agents , Neoplasms , Adult , Humans , Asthenia , Bayes Theorem , Neoplasms/drug therapy , Neoplasms/pathology , Protein Kinase Inhibitors/adverse effects , Fatigue/chemically induced , Cyclin-Dependent Kinases , Maximum Tolerated Dose , Dose-Response Relationship, Drug , Antineoplastic Agents/adverse effects
8.
Nat Med ; 30(1): 271-278, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38052910

ABSTRACT

KRAS G12C mutation is prevalent in ~4% of colorectal cancer (CRC) and is associated with poor prognosis. Divarasib, a KRAS G12C inhibitor, has shown modest activity as a single agent in KRAS G12C-positive CRC at 400 mg. Epidermal growth factor receptor has been recognized as a major upstream activator of RAS-MAPK signaling, a proposed key mechanism of resistance to KRAS G12C inhibition in CRC. Here, we report on divarasib plus cetuximab (epidermal growth factor receptor inhibitor) in patients with KRAS G12C-positive CRC (n = 29) from arm C of an ongoing phase 1b trial. The primary objective was to evaluate safety. Secondary objectives included preliminary antitumor activity. The safety profile of this combination was consistent with those of single-agent divarasib and cetuximab. Treatment-related adverse events led to divarasib dose reductions in four patients (13.8%); there were no treatment withdrawals. The objective response rate was 62.5% (95% confidence interval: 40.6%, 81.2%) in KRAS G12C inhibitor-naive patients (n = 24). The median duration of response was 6.9 months. The median progression-free survival was 8.1 months (95% confidence interval: 5.5, 12.3). As an exploratory objective, we observed a decline in KRAS G12C variant allele frequency associated with response and identified acquired genomic alterations at disease progression that may be associated with resistance. The manageable safety profile and encouraging antitumor activity of divarasib plus cetuximab support the further investigation of this combination in KRAS G12C-positive CRC.ClinicalTrials.gov identifier: NCT04449874.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Cetuximab/adverse effects , Cetuximab/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , Progression-Free Survival , Mutation/genetics
9.
J Clin Pharmacol ; 64(5): 544-554, 2024 May.
Article in English | MEDLINE | ID: mdl-38105505

ABSTRACT

Tiragolumab is a first-in-class, fully human IgG1/kappa anti-TIGIT monoclonal antibody that blocks the binding of TIGIT to CD155 (the poliovirus receptor). We summarize the pharmacokinetics (PK) data from the phase 1a/1b GO30103 study of Q3W (every 3 weeks) sequential dosing of tiragolumab (2, 8, 30, 100, 400, 600, or 1200 mg) followed by atezolizumab (1200 mg), Q4W (every 4 weeks) sequential dosing (tiragolumab 840 mg followed by atezolizumab 1680 mg), and Q4W co-infusion (tiragolumab 840 mg plus atezolizumab 1680 mg). Serum samples were collected at multiple time points following tiragolumab and atezolizumab intravenous infusion in patients with solid tumors for PK and immunogenicity assessment. The serum PK profile of tiragolumab appeared to be biphasic, with a rapid distribution phase followed by a slower elimination phase when administered alone or in combination with atezolizumab. In phase 1a, across doses of tiragolumab ranging from 2 to 1200 mg (cycle 1), the geometric mean (GM), coefficient of variation (CV%), serum tiragolumab Cmax ranged from 0.682 to 270 µg/mL (18.6% to 36.5%) and Cmin ranged from 0.0125 to 75.3 µg/mL (0.0% to 24.2%). The GM systemic exposure (area under the plasma drug concentration-time curve, AUC0-21) ranged from 310 to 2670 µg day/mL (20.5% to 27.0%); interindividual variability in AUC0-21 ranged from 20.5% to 43.9%. Tiragolumab exposure increased in an approximately dose-proportional manner when administered alone or with atezolizumab at doses ≥100 mg. Postbaseline, 4/207 patients (1.9%) were positive for treatment-emergent antidrug antibodies (ADA) against tiragolumab, each at a single time point. Tiragolumab combined with atezolizumab demonstrated desirable PK properties, with no drug-drug interactions or immunogenicity liability. There were no meaningful differences in tiragolumab or atezolizumab exposure between the Q4W co-infusion and sequential dosing cohorts. ClinicalTrials.gov: NCT02794571 (date of registration June 6, 2016).


Subject(s)
Antibodies, Monoclonal, Humanized , Neoplasms , Humans , Neoplasms/drug therapy , Male , Female , Middle Aged , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Adult , Aged , Dose-Response Relationship, Drug , Infusions, Intravenous , Area Under Curve , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/administration & dosage
10.
Br J Cancer ; 130(3): 476-482, 2024 02.
Article in English | MEDLINE | ID: mdl-38135713

ABSTRACT

BACKGROUND: Our preclinical work revealed tumour hypoxia induces homologous recombination deficiency (HRD), increasing sensitivity to Poly (ADP-ribose) polymerase inhibitors. We aimed to induce tumour hypoxia with ramucirumab thereby sensitising tumours to olaparib. PATIENTS AND METHODS: This multi-institution single-arm Phase 1/2 trial enrolled patients with metastatic gastroesophageal adenocarcinoma refractory to ≥1 systemic treatment. In dose escalation, olaparib was evaluated at escalating dose levels with ramucirumab 8 mg/kg day 1 in 14-day cycles. The primary endpoint of Phase 1 was the recommended Phase 2 dose (RP2D), and in Phase 2 the primary endpoint was the overall response rate (ORR). RESULTS: Fifty-one patients received ramucirumab and olaparib. The RP2D was olaparib 300 mg twice daily with ramucirumab 8 mg/kg. In evaluable patients at the RP2D the ORR was 6/43 (14%) (95% CI 4.7-25.6). The median progression-free survival (PFS) was 2.8 months (95% CI 2.3-4.2) and median overall survival (OS) was 7.3 months (95% CI 5.7-13.0). Non-statistically significant improvements in PFS and OS were observed for patients with tumours with mutations in HRD genes. CONCLUSIONS: Olaparib and ramucirumab is well-tolerated with efficacy that exceeds historical controls with ramucirumab single agent for gastric cancer in a heavily pre-treated patient population.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Piperazines , Stomach Neoplasms , Humans , Ramucirumab , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Phthalazines , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Esophagogastric Junction , Antineoplastic Combined Chemotherapy Protocols/adverse effects
11.
JAMA Oncol ; 9(11): 1574-1582, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37768658

ABSTRACT

Importance: Inhibition of the T-cell immunoreceptor with Ig and ITIM domains (TIGIT)/poliovirus receptor pathway may amplify the antitumor immune response of atezolizumab in programmed death ligand 1-selected tumors. Objective: To evaluate the safety and antitumor activity of the anti-TIGIT antibody tiragolumab and its combination with atezolizumab in patients with advanced solid tumors. Design, Setting, and Participants: The GO30103 open-label, first-in-human phase 1a/1b dose-escalation and dose-expansion nonrandomized controlled trial was conducted at 13 sites in 6 countries (Australia, Canada, France, Korea, Spain, and the US). The start dates were May 23, 2016, for phase 1a and October 11, 2016, for phase 1b. Patients were aged 18 years or older with measurable disease at baseline. The clinical cutoff date was October 1, 2021. Data analysis was performed on January 24, 2022. Interventions: Patients received fixed-dose intravenous tiragolumab on day 1 of each 21-day cycle (2 mg escalating to 1200 mg) in phase 1a, plus fixed-dose intravenous atezolizumab (1200 mg every 3 weeks) in phase 1b. Patients were treated until disease progression, loss of clinical benefit, or development of unacceptable toxicity. Main Outcomes and Measures: The primary end points included the safety, tolerability, and recommended phase 2 dose (RP2D) of tiragolumab or combination tiragolumab plus atezolizumab. The secondary end point included the investigator-assessed objective response rate (ORR). Counts and percentages are used for categorical variables, and medians and ranges are used for continuous variables. Results: Among the phase 1a (n = 24) and 1b (n = 49) dose-escalation cohorts, the median age was 60 (range, 40-77) and 54 (range, 25-81) years, respectively. More than half of patients were women (14 of 24 [58%] and 25 of 49 [51%]), and more than a third (10 [42%] and 18 [37%]) had received 4 or more prior cancer therapies. No dose-limiting toxicities occurred, and the maximum tolerated dose of tiragolumab was not reached (NR). The most frequent treatment-related adverse events (AEs) were fatigue (5 of 24 [21%]) in phase 1a and pruritus (5 of 49 [10%]) in phase 1b; the majority of AEs were grade 1 or 2. Immune-mediated AEs occurred in 4 of 24 (17%) and 29 of 49 (59%) patients during phases 1a and 1b, respectively (primarily grade 1 or 2). The RP2D of tiragolumab was 600 mg intravenously every 3 weeks, which was tested in phase 1b dose expansion. The confirmed ORR was 0% during phase 1a, with evidence of antitumor activity in 6% of patients (n = 3) during phase 1b. The safety profile of combination tiragolumab plus atezolizumab in phase 1b was similar in the dose-escalation and dose-expansion cohorts. The confirmed ORR was 46% (6 of 13) in the non-small cell lung cancer (NSCLC) cohort (median duration of response [DOR], NR) and 28% (5 of 18) in the esophageal cancer (EC) cohort (median DOR, 15.2 [95% CI, 7.0 to NR] months). Conclusions and Relevance: In this nonrandomized controlled trial, tiragolumab was well tolerated with or without atezolizumab; no new safety signals were observed. Preliminary antitumor activity was demonstrated for the combination regimen in patients with cancer immunotherapy-naive metastatic NSCLC or EC. Trial Registration: ClinicalTrials.gov Identifier: NCT02794571.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Esophageal Neoplasms , Lung Neoplasms , Humans , Female , Middle Aged , Male , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Esophageal Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Receptors, Immunologic/therapeutic use
12.
Cancer Res Commun ; 3(8): 1638-1647, 2023 08.
Article in English | MEDLINE | ID: mdl-37637935

ABSTRACT

Methionine aminopeptidase 2 (MetAP2) is essential to endothelial cell growth and proliferation during tumor angiogenesis. M8891 is a novel orally bioavailable, potent, selective, reversible MetAP2 inhibitor with antiangiogenic and antitumor activity in preclinical studies. The safety, tolerability, pharmacokinetics, and pharmacodynamics of M8891 monotherapy were assessed in a phase I, first-in-human, multicenter, open-label, single-arm, dose-escalation study (NCT03138538). Patients with advanced solid tumors received 7-80 mg M8891 once daily in 21-day cycles. The primary endpoint was dose-limiting toxicity (DLT) during cycle 1, with the aim to determine the maximum tolerated dose (MTD). Twenty-seven patients were enrolled across six dose levels. Two DLTs (platelet count decrease) were reported, one each at 60 and 80 mg/once daily M8891, resolving after treatment discontinuation. MTD was not determined. The most common treatment-emergent adverse event was platelet count decrease. M8891 plasma concentration showed dose-linear increase up to 35 mg and low-to-moderate variability; dose-dependent tumor accumulation of methionylated elongation factor 1α, a MetAP2 substrate, was observed, demonstrating MetAP2 inhibition. Pharmacokinetic/pharmacodynamic response data showed that preclinically defined target levels required for in vivo efficacy were achieved at safe, tolerated doses. Seven patients (25.9%) had stable disease for 42-123 days. We conclude that M8891 demonstrates a manageable safety profile, with dose-proportional exposure and low-to-moderate interpatient variability at target pharmacokinetic/pharmacodynamic levels at ≤35 mg M8891 once daily. On the basis of the data, 35 mg M8891 once daily is the recommended phase II dose for M8891 monotherapy. This study forms the basis for future development of M8891 in monotherapy and combination studies. Significance: M8891 represents a novel class of reversible MetAP2 inhibitors and has demonstrated preclinical antitumor activity. This dose-escalation study assessed M8891 treatment for patients with advanced solid tumors. M8891 demonstrated favorable pharmacokinetics, tumoral target engagement, and a manageable safety profile, and thus represents a novel antitumor strategy warranting further clinical studies.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Aminopeptidases , Metalloendopeptidases , Angiogenesis Inhibitors/adverse effects , Enzyme Inhibitors
13.
Heliyon ; 9(8): e18680, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37593628

ABSTRACT

Rationale and objectives: Adenoid cystic carcinoma (ACC) is a rare salivary gland cancer. The vast majority of clinical trials evaluating systemic therapy efficacy in solid tumors use the Response Evaluation Criteria in Solid Tumors (RECIST) to measure response that is limited to 2 dimensional only evaluations, not taking volume or density into account. The indolent behavior ACC represents a challenge toward an appropriate evaluation of therapy response. Objectives: 1) To describe and contrast volumetric and density changes at each time-point, including changes noted from baseline to best response, to currently used 2 dimensional-only criteria (RECIST) and 2) To report the coefficient of variation in volume measurement among three reviewers on a subset of ACC patients. Materials and methods: We retrospectively assessed a cohort of 18 prospectively treated patients with ACC in a phase 2 trial with vorinostat using a volumetric (viable tumor volume, VTV) and density criteria. Three independent and blinded observers segmented target lesions across a sample of randomly selected computed tomography (CT) exams to examine inter-observer variation. Results: We found that the average coefficient of variation among observers for all target lesions was 16.1%, with lung lesions displaying a smaller variation at 14.0% (p-value >0.17). We describe examples of decrease in volume and density in several lesions despite stable disease by RECIST. Conclusion: This pilot study demonstrates that two-dimensional criteria such as RECIST may not be the best criteria to assess response to therapy, especially with evolving tools within picture archiving and communication system (PACS) that can assess volumetric size, density and texture, however, this should be prospectively studied.

14.
N Engl J Med ; 389(8): 710-721, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37611121

ABSTRACT

BACKGROUND: Divarasib (GDC-6036) is a covalent KRAS G12C inhibitor that was designed to have high potency and selectivity. METHODS: In a phase 1 study, we evaluated divarasib administered orally once daily (at doses ranging from 50 to 400 mg) in patients who had advanced or metastatic solid tumors that harbor a KRAS G12C mutation. The primary objective was an assessment of safety; pharmacokinetics, investigator-evaluated antitumor activity, and biomarkers of response and resistance were also assessed. RESULTS: A total of 137 patients (60 with non-small-cell lung cancer [NSCLC], 55 with colorectal cancer, and 22 with other solid tumors) received divarasib. No dose-limiting toxic effects or treatment-related deaths were reported. Treatment-related adverse events occurred in 127 patients (93%); grade 3 events occurred in 15 patients (11%) and a grade 4 event in 1 patient (1%). Treatment-related adverse events resulted in a dose reduction in 19 patients (14%) and discontinuation of treatment in 4 patients (3%). Among patients with NSCLC, a confirmed response was observed in 53.4% of patients (95% confidence interval [CI], 39.9 to 66.7), and the median progression-free survival was 13.1 months (95% CI, 8.8 to could not be estimated). Among patients with colorectal cancer, a confirmed response was observed in 29.1% of patients (95% CI, 17.6 to 42.9), and the median progression-free survival was 5.6 months (95% CI, 4.1 to 8.2). Responses were also observed in patients with other solid tumors. Serial assessment of circulating tumor DNA showed declines in KRAS G12C variant allele frequency associated with response and identified genomic alterations that may confer resistance to divarasib. CONCLUSIONS: Treatment with divarasib resulted in durable clinical responses across KRAS G12C-positive tumors, with mostly low-grade adverse events. (Funded by Genentech; ClinicalTrials.gov number, NCT04449874.).


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Colorectal Neoplasms , Enzyme Inhibitors , Lung Neoplasms , Humans , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Administration, Oral , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/therapeutic use
15.
JNCI Cancer Spectr ; 7(4)2023 07 03.
Article in English | MEDLINE | ID: mdl-37467065

ABSTRACT

BACKGROUND: Oncology clinical trials are complex, and the COVID-19 pandemic caused major disruptions in 2020. METHODS: Using its networking and sharing of best practices, the Association of American Cancer Institutes, comprising 105 cancer centers, solicited a longitudinal series of voluntary surveys from members to assess how clinical trial office operations were affected. The surveys showed that centers were able to keep oncology trials available to patients while maintaining safety. Data were collected regarding interventional clinical trial accruals for the calendar years 2019, 2020, and 2021. RESULTS: Data demonstrated a sizeable decrease in interventional treatment trial accruals in both 2020 and 2021 compared with prepandemic figures in 2019. No cancer center reported an increase in interventional treatment trial accruals in 2020 compared with 2019, with most centers reporting a moderate decrease. In mid-2022, 15% of respondents reported an increasing trend, 31% reported no significant change, and 54% continued to report a decrease. CONCLUSIONS: The pandemic necessitated rapid adoption of trial operations, with the emergence of several best practices, including remote monitoring, remote consenting, electronic research charts, and work-from-home strategies for staff. The national infrastructure to conduct trials was significantly affected by the pandemic, with noteworthy resiliency, evidenced by improvements in efficiencies and patient-centered care delivery but with residual capacity challenges that will be evident for the foreseeable future.


Subject(s)
COVID-19 , Neoplasms , Humans , United States/epidemiology , COVID-19/epidemiology , Pandemics , Neoplasms/epidemiology , Neoplasms/surgery , Medical Oncology , Research Design
16.
Cancer Invest ; 41(7): 646-655, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37505929

ABSTRACT

Preclinical data suggest that IDH1/2 mutations result in defective homologous recombination repair (HRR). We hypothesized that patients with IDH1/2mt intrahepatic cholangiocarcinoma (IHCC) would benefit more from 1 L platinum chemotherapy than patients with wildtype (WT) tumors. We performed a multicenter retrospective study of 81 patients with unresectable IHCC treated with 1 L platinum with a primary endpoint of clinical benefit rate (CBR). Patients with IDH1/2mt tumors had a similar CBR and objective response rate compared to those with IDH WT disease (59 versus 54%; p = 0.803), suggesting that a relationship between platinum sensitivity and HRR gene defects may be specific to tumor context.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Retrospective Studies , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Isocitrate Dehydrogenase/genetics , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Mutation , Bile Ducts, Intrahepatic/pathology
17.
Cancer Res Commun ; 3(6): 1132-1139, 2023 06.
Article in English | MEDLINE | ID: mdl-37387791

ABSTRACT

Purpose: O6-methylguanine DNA methyltransferase (MGMT)-silenced tumors reveal sensitivity to temozolomide (TMZ), which may be enhanced by PARP inhibitors. Approximately 40% of colorectal cancer has MGMT silencing and we aimed to measure antitumoral and immunomodulatory effects from TMZ and olaparib in colorectal cancer. Experimental Design: Patients with advanced colorectal cancer were screened for MGMT promoter hypermethylation using methylation-specific PCR of archival tumor. Eligible patients received TMZ 75 mg/m2 days 1-7 with olaparib 150 mg twice daily every 21 days. Pretreatment tumor biopsies were collected for whole-exome sequencing (WES), and multiplex quantitative immunofluorescence (QIF) of MGMT protein expression and immune markers. Results: MGMT promoter hypermethylation was detected in 18/51 (35%) patients, 9 received study treatment with no objective responses, 5/9 had stable disease (SD) and 4/9 had progressive disease as best response. Three patients had clinical benefit: carcinoembryonic antigen reduction, radiographic tumor regression, and prolonged SD. MGMT expression by multiplex QIF revealed prominent tumor MGMT protein from 6/9 patients without benefit, while MGMT protein was lower in 3/9 with benefit. Moreover, benefitting patients had higher baseline CD8+ tumor-infiltrating lymphocytes. WES revealed 8/9 patients with MAP kinase variants (7 KRAS and 1 ERBB2). Flow cytometry identified peripheral expansion of effector T cells. Conclusions: Our results indicate discordance between MGMT promoter hypermethylation and MGMT protein expression. Antitumor activity seen in patients with low MGMT protein expression, supports MGMT protein as a predictor of alkylator sensitivity. Increased CD8+ TILs and peripheral activated T cells, suggest a role for immunostimulatory combinations. Significance: TMZ and PARP inhibitors synergize in vitro and in vivo in tumors with MGMT silencing. Up to 40% of colorectal cancer is MGMT promoter hypermethylated, and we investigated whether TMZ and olaparib are effective in this population. We also measured MGMT by QIF and observed efficacy only in patients with low MGMT, suggesting quantitative MGMT biomarkers more accurately predict benefit to alkylator combinations.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Rectal Neoplasms , Humans , Temozolomide/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , DNA Repair , O(6)-Methylguanine-DNA Methyltransferase , Colorectal Neoplasms/drug therapy , Alkylating Agents
18.
Cancer Res Commun ; 3(6): 1113-1117, 2023 06.
Article in English | MEDLINE | ID: mdl-37377610

ABSTRACT

Purpose: Veliparib is a PARP inhibitor (PARPi) with activity in BRCA 1/2/PALB2-deficient tumors. Preclinical observations reveal topoisomerase inhibitors like irinotecan are synergistic with PARPi irrespective of homologous recombination deficiency (HRD), potentially expanding the role for PARPi. Experimental Design: NCI 7977 was a multicohort phase I clinical trial evaluating the safety and efficacy of multiple dose schedules of veliparib with irinotecan for solid tumors. In the intermittent veliparib cohort, escalating doses of veliparib were given twice daily at dose level (DL) 1 (50 mg) and DL 2 (100 mg) days 1-4 and 8-11 with irinotecan 100 mg/m2 days 3 and 10 in 21-day cycles. Results: Fifteen patients enrolled, 8 of 15 (53%) received ≥4 prior systemic treatments. At DL1, 1 of 6 patients experienced a dose-limiting toxicity (DLT) of diarrhea. At DL2, 9 patients were treated, with 3 unevaluable for DLT, and 2 of 6 evaluable patients experienced a DLT of grade 3 neutropenia. Irinotecan 100 mg/m2 and veliparib 50 mg twice daily was the MTD. No objective responses were observed, although 4 patients had progression-free survival >6 months. Conclusions: The MTD of intermittent veliparib is 50 mg twice daily days 1-4 and 8-11 with weekly irinotecan 100 mg/m2 days 3 and 10 every 21 days. Multiple patients experienced prolonged stable disease irrespective of HRD and prior irinotecan. However, due to the toxicities with higher dose intermittent veliparib and irinotecan, this schedule was determined too toxic for further development and the arm was closed prematurely. Significance: The combination of intermittent veliparib with weekly irinotecan was deemed too toxic for further development. Future PARPi combinations should focus on agents with nonoverlapping toxicities to improve tolerability. The treatment combination showed limited efficacy with prolonged stable disease observed in multiple heavily pretreated patients, but no objective responses were seen.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Irinotecan/therapeutic use , Neoplasms/drug therapy , Benzimidazoles/adverse effects , Antineoplastic Agents/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects
19.
Cancer Discov ; 13(8): 1802-1813, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37269344

ABSTRACT

Brigimadlin (BI 907828) is an oral MDM2-p53 antagonist that has shown encouraging antitumor activity in vivo. We present phase Ia results from an open-label, first-in-human, phase Ia/Ib study investigating brigimadlin in patients with advanced solid tumors (NCT03449381). Fifty-four patients received escalating doses of brigimadlin on day 1 of 21-day cycles (D1q3w) or days 1 and 8 of 28-day cycles (D1D8q4w). Based on dose-limiting toxicities during cycle 1, the maximum tolerated dose was selected as 60 mg for D1q3w and 45 mg for D1D8q4w. The most common treatment-related adverse events (TRAE) were nausea (74.1%) and vomiting (51.9%); the most common grade ≥3 TRAEs were thrombocytopenia (25.9%) and neutropenia (24.1%). As evidence of target engagement, time- and dose-dependent increases in growth differentiation factor 15 levels were seen. Preliminary efficacy was encouraging (11.1% overall response and 74.1% disease control rates), particularly in patients with well-differentiated or dedifferentiated liposarcoma (100% and 75% disease control rates, respectively). SIGNIFICANCE: We report phase Ia data indicating that the oral MDM2-p53 antagonist brigimadlin has a manageable safety profile and shows encouraging signs of efficacy in patients with solid tumors, particularly those with MDM2-amplified advanced/metastatic well-differentiated or dedifferentiated liposarcoma. Further clinical investigation of brigimadlin is ongoing. See related commentary by Italiano, p. 1765. This article is highlighted in the In This Issue feature, p. 1749.


Subject(s)
Antineoplastic Agents , Liposarcoma , Neoplasms, Second Primary , Neoplasms , Humans , Antineoplastic Agents/therapeutic use , Liposarcoma/chemically induced , Liposarcoma/drug therapy , Nausea/chemically induced , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms, Second Primary/chemically induced , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53/genetics
20.
Cancer Immunol Immunother ; 72(7): 2443-2458, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37016126

ABSTRACT

BACKGROUND: CD73 upregulation in tumors leads to local immunosuppression. This phase I, first-in-human study evaluated oleclumab (MEDI9447), an anti-CD73 human IgG1λ monoclonal antibody, alone or with durvalumab in patients with advanced colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), or epidermal growth factor receptor-mutant non-small-cell lung cancer (NSCLC). METHODS: Patients received oleclumab 5-40 mg/kg (dose-escalation) or 40 mg/kg (dose-expansion) intravenously every 2 weeks (Q2W), alone (escalation only) or with durvalumab 10 mg/kg intravenously Q2W. RESULTS: 192 patients were enrolled, 66 during escalation and 126 (42 CRC, 42 PDAC, 42 NSCLC) during expansion. No dose-limiting toxicities occurred during escalation. In the monotherapy and combination therapy escalation cohorts, treatment-related adverse events (TRAEs) occurred in 55 and 54%, respectively, the most common being fatigue (17 and 25%). In the CRC, PDAC, and NSCLC expansion cohorts, 60, 57, and 45% of patients had TRAEs, respectively; the most common were fatigue (15%), diarrhea (9%), and rash (7%). Free soluble CD73 and CD73 expression on peripheral T cells and tumor cells showed sustained decreases, accompanied by reduced CD73 enzymatic activity in tumor cells. Objective response rate during escalation was 0%. Response rates in the CRC, PDAC, and NSCLC expansion cohorts were 2.4% (1 complete response [CR]), 4.8% (1 CR, 1 partial response [PR]), and 9.5% (4 PRs), respectively; 6-month progression-free survival rates were 5.4, 13.2, and 16.0%. CONCLUSIONS: Oleclumab ± durvalumab had a manageable safety profile, with pharmacodynamic activity reflecting oleclumab's mechanism of action. Evidence of antitumor activity was observed in tumor types that are generally immunotherapy resistant. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov, NCT02503774; date of registration, July 17, 2015.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Fatigue/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...