Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Environ Qual ; 46(6): 1250-1256, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293829

ABSTRACT

Critical source area identification through phosphorus (P) site assessment is a fundamental part of modern nutrient management planning in the United States, yet there has been only sparse testing of the many versions of the P Index that now exist. Each P site assessment tool was developed to be applicable across a range of field conditions found in a given geographic area, making evaluation extremely difficult. In general, evaluation with in-field monitoring data has been limited, focusing primarily on corroborating manure and fertilizer "source" factors. Thus, a multiregional effort (Chesapeake Bay, Heartland, and Southern States) was undertaken to evaluate P Indices using a combination of limited field data, as well as output from simulation models (i.e., Agricultural Policy Environmental eXtender, Annual P Loss Estimator, Soil and Water Assessment Tool [SWAT], and Texas Best Management Practice Evaluation Tool [TBET]) to compare against P Index ratings. These comparisons show promise for advancing the weighting and formulation of qualitative P Index components but require careful vetting of the simulation models. Differences among regional conclusions highlight model strengths and weaknesses. For example, the Southern States region found that, although models could simulate the effects of nutrient management on P runoff, they often more accurately predicted hydrology than total P loads. Furthermore, SWAT and TBET overpredicted particulate P and underpredicted dissolved P, resulting in correct total P predictions but for the wrong reasons. Experience in the United States supports expanded regional approaches to P site assessment, assuming closely coordinated efforts that engage science, policy, and implementation communities, but limited scientific validity exists for uniform national P site assessment tools at the present time.


Subject(s)
Fertilizers , Manure , Phosphorus/analysis , Environmental Monitoring , Soil , Texas , United States
2.
J Environ Qual ; 46(6): 1323-1331, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293832

ABSTRACT

The Agricultural Policy Environmental eXtender (APEX) model is capable of estimating edge-of-field water, nutrient, and sediment transport and is used to assess the environmental impacts of management practices. The current practice is to fully calibrate the model for each site simulation, a task that requires resources and data not always available. The objective of this study was to compare model performance for flow, sediment, and phosphorus transport under two parameterization schemes: a best professional judgment (BPJ) parameterization based on readily available data and a fully calibrated parameterization based on site-specific soil, weather, event flow, and water quality data. The analysis was conducted using 12 datasets at four locations representing poorly drained soils and row-crop production under different tillage systems. Model performance was based on the Nash-Sutcliffe efficiency (NSE), the coefficient of determination () and the regression slope between simulated and measured annualized loads across all site years. Although the BPJ model performance for flow was acceptable (NSE = 0.7) at the annual time step, calibration improved it (NSE = 0.9). Acceptable simulation of sediment and total phosphorus transport (NSE = 0.5 and 0.9, respectively) was obtained only after full calibration at each site. Given the unacceptable performance of the BPJ approach, uncalibrated use of APEX for planning or management purposes may be misleading. Model calibration with water quality data prior to using APEX for simulating sediment and total phosphorus loss is essential.


Subject(s)
Agriculture , Phosphorus/analysis , Water Quality , Environmental Monitoring , Humans , Judgment , Models, Theoretical , Rivers , Water Movements
3.
J Environ Qual ; 46(6): 1349-1356, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293851

ABSTRACT

Phosphorus (P) Index assessment requires independent estimates of long-term average annual P loss from fields, representing multiple climatic scenarios, management practices, and landscape positions. Because currently available measured data are insufficient to evaluate P Index performance, calibrated and validated process-based models have been proposed as tools to generate the required data. The objectives of this research were to develop a regional parameterization for the Agricultural Policy Environmental eXtender (APEX) model to estimate edge-of-field runoff, sediment, and P losses in restricted-layer soils of Missouri and Kansas and to assess the performance of this parameterization using monitoring data from multiple sites in this region. Five site-specific calibrated models (SSCM) from within the region were used to develop a regionally calibrated model (RCM), which was further calibrated and validated with measured data. Performance of the RCM was similar to that of the SSCMs for runoff simulation and had Nash-Sutcliffe efficiency (NSE) > 0.72 and absolute percent bias (|PBIAS|) < 18% for both calibration and validation. The RCM could not simulate sediment loss (NSE < 0, |PBIAS| > 90%) and was particularly ineffective at simulating sediment loss from locations with small sediment loads. The RCM had acceptable performance for simulation of total P loss (NSE > 0.74, |PBIAS| < 30%) but underperformed the SSCMs. Total P-loss estimates should be used with caution due to poor simulation of sediment loss. Although we did not attain our goal of a robust regional parameterization of APEX for estimating sediment and total P losses, runoff estimates with the RCM were acceptable for P Index evaluation.


Subject(s)
Agriculture , Phosphorus/analysis , Water Quality , Environmental Monitoring , Kansas , Models, Theoretical , Water Movements
4.
J Environ Qual ; 46(6): 1257-1269, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293860

ABSTRACT

The advent of real-time, short-term farm management tools is motivated by the need to protect water quality above and beyond the general guidance offered by existing nutrient management plans. Advances in high-performance computing and hydrologic or climate modeling have enabled rapid dissemination of real-time information that can assist landowners and conservation personnel with short-term management planning. This paper reviews short-term decision support tools for agriculture that are under various stages of development and implementation in the United States: (i) Wisconsin's Runoff Risk Advisory Forecast (RRAF) System, (ii) New York's Hydrologically Sensitive Area Prediction Tool, (iii) Virginia's Saturated Area Forecast Model, (iv) Pennsylvania's Fertilizer Forecaster, (v) Washington's Application Risk Management (ARM) System, and (vi) Missouri's Design Storm Notification System. Although these decision support tools differ in their underlying model structure, the resolution at which they are applied, and the hydroclimates to which they are relevant, all provide forecasts (range 24-120 h) of runoff risk or soil moisture saturation derived from National Weather Service Forecast models. Although this review highlights the need for further development of robust and well-supported short-term nutrient management tools, their potential for adoption and ultimate utility requires an understanding of the appropriate context of application, the strategic and operational needs of managers, access to weather forecasts, scales of application (e.g., regional vs. field level), data requirements, and outreach communication structure.


Subject(s)
Agriculture , Soil/chemistry , Water Pollutants , Forecasting , New York , Nitrogen , Pennsylvania , Phosphorus , Wisconsin
5.
J Environ Qual ; 46(6): 1332-1340, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293861

ABSTRACT

Process-based computer models have been proposed as a tool to generate data for Phosphorus (P) Index assessment and development. Although models are commonly used to simulate P loss from agriculture using managements that are different from the calibration data, this use of models has not been fully tested. The objective of this study is to determine if the Agricultural Policy Environmental eXtender (APEX) model can accurately simulate runoff, sediment, total P, and dissolved P loss from 0.4 to 1.5 ha of agricultural fields with managements that are different from the calibration data. The APEX model was calibrated with field-scale data from eight different managements at two locations (management-specific models). The calibrated models were then validated, either with the same management used for calibration or with different managements. Location models were also developed by calibrating APEX with data from all managements. The management-specific models resulted in satisfactory performance when used to simulate runoff, total P, and dissolved P within their respective systems, with > 0.50, Nash-Sutcliffe efficiency > 0.30, and percent bias within ±35% for runoff and ±70% for total and dissolved P. When applied outside the calibration management, the management-specific models only met the minimum performance criteria in one-third of the tests. The location models had better model performance when applied across all managements compared with management-specific models. Our results suggest that models only be applied within the managements used for calibration and that data be included from multiple management systems for calibration when using models to assess management effects on P loss or evaluate P Indices.


Subject(s)
Environmental Monitoring , Phosphorus/analysis , Water Movements , Agriculture , Calibration , Models, Theoretical
6.
J Environ Qual ; 42(6): 1829-37, 2013 Nov.
Article in English | MEDLINE | ID: mdl-25602423

ABSTRACT

Continuous application of poultry litter (PL) significantly changes many soil properties, including soil test P (STP); Al, Fe, and Ca concentrations; and pH, which can affect the potential for P transport in surface runoff water. We conducted rainfall simulations on three historically acidic silt loam soils in Arkansas, Missouri, and Virginia to establish if long-term PL applications would affect soil inorganic P fractions and the resulting dissolved reactive P (DRP) in runoff water. Soil samples (0-5 cm depth) were taken to find sites ranging in Mehlich-3 STP from 20 to 1154 mg P kg. Simulated rainfall events were conducted on 3-m plots at 6.7 cm h, and runoff was collected for 30 min. Correlation between Mehlich-3 and runoff DRP indicated a linear relationship to 833 mg Mehlich-3 P kg. As Mehlich-3 STP increased, a concomitant increase in soil pH and Ca occurred on all soils. Soil P fractionation demonstrated that, as Mehlich-3 STP generally increased above 450 mg P kg (from high to very high), the easily soluble and loosely bound P fractions decreased by 3 to 10%. Water-insoluble complexes of P bound to Al and Ca were the main drivers in the reduction of DRP in runoff, accounting for up to 43 and 38% of total P, respectively. Basing runoff DRP concentration projections solely on Mehlich-3 STP may overestimate runoff P losses from soils receiving long-term PL applications due to dissolution of water-insoluble Ca-P compounds.

7.
J Environ Qual ; 41(6): 1711-9, 2012.
Article in English | MEDLINE | ID: mdl-23128728

ABSTRACT

Many states have invested significant resources to identify components of their Phosphorus (P) Index that reliably estimate the relative risk of P loss and incentivize conservation management. However, differences in management recommendations and manure application guidelines for similar field conditions among state P Indices, coupled with minimal reductions in the extent of P-impaired surface waters and soil test P (STP) levels, led the U.S. Natural Resources Conservation Service (NRCS) to revise the 590 Nutrient Management Standard. In preparation for this revision, NRCS requested that a review of the scientific underpinnings and accuracy of current P Indices be undertaken. They also sought to standardize the interpretation and management implications of P Indices, including establishment of ratings above which P applications should be curtailed. Although some states have initiated STP thresholds above which no application of P is allowed, STP alone cannot define a site's risk of P loss. Phosphorus Indices are intended to account for all of the major factors leading to P loss. A rigorous evaluation of P Indices is needed to determine if they are directionally and magnitudinally correct. Although use of observed P loss data under various management scenarios is ideal, such data are spatially and temporally limited. Alternatively, the use of a locally validated water quality model that has been shown to provide accurate estimates of P loss may be the most expedient option to conduct Index assessments in the short time required by the newly revised 590 Standard.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/chemistry , Phosphorus/chemistry , Conservation of Natural Resources , Ecosystem , Geological Phenomena , Risk Factors , Soil/chemistry , Water/chemistry , Water Movements
8.
J Environ Qual ; 41(6): 1758-66, 2012.
Article in English | MEDLINE | ID: mdl-23128733

ABSTRACT

In most states, the phosphorus (P) index (PI) is the adopted strategy for assessing a field's vulnerability to P loss; however, many state PIs have not been rigorously evaluated against measured P loss data to determine how well the PI assigns P loss risk-a major reason being the lack of field data available for such an analysis. Given the lack of P loss data available for PI evaluation, our goal was to demonstrate how a P loss model can be used to evaluate and revise a PI using the Pennsylvania (PA) PI as an example. Our first objective was to compare two different formulations-multiplicative and component-for calculating a PI. Our second objective was to evaluate whether output from a P loss model can be used to improve PI weighting by calculating weights for modified versions of the PA PI from model-generated P loss data. Our results indicate that several potential limitations exist with the original multiplicative index formulation and that a component formulation is more consistent with how P loss is calculated with P loss models and generally provides more accurate estimates of P loss. Moreover, using the PI weights calculated from the model-generated data noticeably improved the correlation between PI values and a large and diverse measured P loss data set. The approach we use here can be used with any P loss model and PI and thus can serve as a guide to assist states in evaluating and modifying their PI.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Phosphorus/chemistry , Water Pollutants, Chemical/chemistry , Agriculture , Computer Simulation , Monte Carlo Method
9.
J Environ Qual ; 39(3): 776-83, 2010.
Article in English | MEDLINE | ID: mdl-20400573

ABSTRACT

On 10 Apr. 2009, USEPA proposed and on 30 Oct. 2009 USEPA finalized reporting thresholds for a wide range of human-derived sources of greenhouse gas (GHG) as a first step in establishing emission limits in the United States. The only on-farm source category that required monitoring under the proposed and final rule was methane (CH(4)) and nitrous oxide (NO(2)) emissions from manure storage facilities. Our objective was to assess, through a literature review, the methodology used by USEPA to estimate current CH(4) emissions from uncovered anaerobic lagoons and the proposed methodology for reporting those emissions under the proposed rule. A review of the performance of uncovered anaerobic lagoons indicates that they are more effective at degrading volatile solids (VS) than predicted using parameters provided by USEPA that had been developed for anaerobic digesters. We also documented errors in the USEPA- and International Panel on Climate Change-estimated methane conversion factors for uncovered anaerobic lagoons. We suggest estimating CH(4) emissions from anaerobic lagoons based on VS degraded in the lagoon and B' (m(3) CH(4) generated kg(-1) VS destroyed). Our estimate of CH(4) released from uncovered anaerobic lagoons indicated the regulatory operation size threshold could be at least 65% smaller than predicted by USEPA in the proposed rule. Our calculated estimate of CH(4) emissions was substantially greater than the few estimates of CH(4) loss based on direct measurements on uncovered anaerobic lagoons. More research is needed before it will be possible to provide definitive estimates of CH(4) loss from uncovered anaerobic lagoons.


Subject(s)
Carbon Dioxide/metabolism , Environmental Monitoring/methods , Greenhouse Effect , Methanol/metabolism , Waste Disposal, Fluid , Anaerobiosis , Carbon Dioxide/chemistry , Methanol/chemistry , United States , United States Environmental Protection Agency , Waste Disposal, Fluid/legislation & jurisprudence
10.
J Environ Qual ; 33(3): 1114-23, 2004.
Article in English | MEDLINE | ID: mdl-15224951

ABSTRACT

Concerns about manure P and water quality have prompted new regulations imposing P limits on land application of manure. Previous research established that P limits increase land needs for animal feeding operations. We evaluated the effect of N, annual P, and rotation P limits on the feasibility of manure management. A mechanistic model characterized manure management practices on 39 swine operations (20 unagitated lagoon and 19 slurry operations) in five states (Iowa, Missouri, North Carolina, Oklahoma, and Pennsylvania). Extensive information collected from each operation was used to determine effects of manure storage type, ownership structure, and application limits on attributes of manure management. Phosphorus limits had substantially greater effect on slurry operations, increasing land needs 250% (0.3 hectares per animal unit [AU]) and time for manure application 24% (2.5 min AU(-1)) for rotation P limits and 41% (4.4 min AU(-1)) for annual P limits. Annual P limits were infeasible for current land application equipment on two operations and had the greatest effect on time and costs because they required all but three slurry operations to reduce discharge rate. We recommend implementing rotation P limits (not to exceed crop N need) to minimize time effects, allow most farmers to use their current manure application methods, and allow manure to fulfill crop N and P needs in the year of application. Phosphorus limits increased potential manure value but would require slurry operations to recover at least 61% of manure value through manure sales. Phosphorus limits are likely to shape the U.S. swine industry through differential effects on the various sectors of the swine industry.


Subject(s)
Agriculture/economics , Manure , Phosphorus , Swine , Water Pollution/economics , Water Pollution/prevention & control , Animals , Conservation of Natural Resources , Costs and Cost Analysis , Environment , Fertilizers , Nitrogen , Refuse Disposal
11.
J Environ Qual ; 33(3): 1106-13, 2004.
Article in English | MEDLINE | ID: mdl-15224950

ABSTRACT

Water quality concerns and revised regulations are changing how confined animal feeding operations manage manure. Devising acceptable and feasible changes in manure practices requires a full understanding of the forces shaping current manure management decisions. Previous theoretical models have shown that a wide range of factors influence the lowest cost solution for manure management. We used a mechanistic model to characterize the manure management practices on 39 swine operations (20 unagitated lagoon and 19 slurry operations) in five states (Iowa, Missouri, North Carolina, Oklahoma, and Pennsylvania). Information was collected from each operation about animal numbers, feed and water use, manure handling and storage characteristics, field locations, crop rotation, fertilizer need, and equipment inventory and usage. Collected data were used as input and to validate results from a mechanistic model that determined acres required for manure application, manure application rate, time required for manure application, value of manure, and costs of manure management. The 39 farms had a mean of 984 animal units (AU) per operation, 18.2 AU ha(-1) (7.4 AU acre(-1)), and manure application costs of dollar 10.49 AU(-1) yr(-1). Significant factors affecting manure management included operation size, manure handling system, state, and ownership structure. Larger operations had lower manure management costs (r2 = 0.32). Manure value potentially exceeded manure application costs on 58% of slurry and 15% of lagoon operations. But 38% of slurry operations needed to apply manure off the farm whereas all lagoon operations had sufficient land for N-based manure management. Manure management was a higher percentage of gross income on contract operations compared with independents (P < 0.01). This research emphasized the importance of site-specific factors affecting manure management decisions and the economics of U.S. swine operations.


Subject(s)
Manure , Models, Theoretical , Nitrogen/analysis , Swine , Water Pollution/prevention & control , Agriculture/economics , Animals , Decision Making , Environment , Forecasting , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...