Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 16(1): 93, 2017 May 25.
Article in English | MEDLINE | ID: mdl-28545544

ABSTRACT

BACKGROUND: The biosynthesis pathway of benzoxazole compounds caboxamycin and nataxazole have been recently elucidated. Both compounds share one of their precursors, 3-hydroxyanthranilate (two units in the case of nataxazole). In addition, caboxamycin structure includes a salicylate moiety while 6-methylsalycilate is the third scaffold in nataxazole. Pathways cross-talk has been identified in caboxamycin producer Streptomyces sp. NTK937, between caboxamycin and enterobactin pathways, and nataxazole producer Streptomyces sp. Tü6176, between nataxazole and coelibactin pathways. These events represent a natural form of combinatorial biosynthesis. RESULTS: Eleven novel caboxamycin derivatives, and five putative novel derivatives, bearing distinct substitutions in the aryl ring have been generated. These compounds were produced by heterologous expression of several caboxamycin biosynthesis genes in Streptomyces albus J1074 (two compounds), by combinatorial biosynthesis in Streptomyces sp. NTK937 expressing nataxazole iterative polyketide synthase (two compounds) and by mutasynthesis using a nonproducing mutant of Streptomyces sp. NTK937 (12 compounds). Some of the compounds showed improved bioactive properties in comparison with caboxamycin. CONCLUSIONS: In addition to the benzoxazoles naturally biosynthesized by the caboxamycin and nataxazole producers, a greater structural diversity can be generated by mutasynthesis and heterologous expression of benzoxazole biosynthesis genes, not only in the respective producer strains but also in non-benzoxazole producers such as S. albus strains. These results show that the production of a wide variety of benzoxazoles could be potentially achieved by the sole expression of cbxBCDE genes (or orthologs thereof), supplying an external source of salicylate-like compounds, or with the concomitant expression of other genes capable of synthesizing salicylates, such as cbxA or natPK.


Subject(s)
Benzoxazoles/metabolism , Polyketide Synthases/metabolism , Streptomyces/metabolism , Benzoxazoles/chemistry , Biosynthetic Pathways , Streptomyces/genetics
2.
Microb Biotechnol ; 10(4): 873-885, 2017 07.
Article in English | MEDLINE | ID: mdl-28417606

ABSTRACT

Streptomyces sp. NTK937, producer of benzoxazole antibiotic caboxamycin, produces in addition a methyl ester derivative, O-methylcaboxamycin. Caboxamycin cluster, comprising one regulatory and nine structural genes, has been delimited, and each gene has been individually inactivated to demonstrate its role in the biosynthetic process. The O-methyltransferase potentially responsible for O-methylcaboxamycin synthesis would reside outside this cluster. Five of the genes, cbxR, cbxA, cbxB, cbxD and cbxE, encoding a SARP transcriptional regulator, salicylate synthase, 3-oxoacyl-ACP-synthase, ACP and amidohydrolase, respectively, have been found to be essential for caboxamycin biosynthesis. The remaining five structural genes were found to have paralogues distributed throughout the genome, capable of partaking in the process when their cluster homologue is inactivated. Two of such paralogues, cbxC' and cbxI', coding an AMP-dependent synthetase-ligase and an anthranilate synthase, respectively, have been identified. However, the other three genes might simultaneously have more than one paralogue, given that cbxF (DAHP synthase), cbxG (2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase) and cbxH (isochorismatase) have three, three and five putative paralogue genes, respectively, of similar function within the genome. As a result of genetic manipulation, a novel benzoxazole (3'-hydroxycaboxamycin) has been identified in the salicylate synthase-deficient mutant strain ΔcbxA. 3'-hydroxycaboxamycin derives from the cross-talk between the caboxamycin and enterobactin pathways.


Subject(s)
Anti-Bacterial Agents/metabolism , Benzoxazoles/metabolism , Biosynthetic Pathways/genetics , Streptomyces/genetics , Streptomyces/metabolism , Genes, Bacterial , Metabolic Engineering , Multigene Family
3.
Chembiochem ; 16(13): 1925-1932, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26083234

ABSTRACT

Streptomyces sp. Tü 6176, producer of cytotoxic benzoxazoles AJI9561, nataxazole, and 5-hydroxy-nataxazole, has been found to produce a fourth benzoxazole, UK-1. All derive from 3-hydroxy-anthranilate synthesized by the nataxazole biosynthesis machinery. However, biosynthesis of AJI9561, nataxazole, and 5-hydroxy-nataxazole requires 6-methylsalicylic acid also provided by nataxazole biosynthesis pathway, while biosynthesis of UK-1 utilizes salicylic acid produced by a salicylate synthase from the coelibactin biosynthesis pathway. This clearly suggests crosstalk between nataxazole and coelibactin pathways. Overproduction of UK-1 was obtained by growing a nataxazole non-producing mutant (lacking 6-methylsalicylate synthase, NatPK) in a zinc-deficient medium. Furthermore, Streptomyces sp. Tü 6176 also produces the siderophore enterobactin in an iron-free medium. Enterobactin production can be induced in an iron-independent manner by inactivating natAN, which encodes an anthranilate synthase involved in nataxazole production. The results indicate a close relationship between nataxazole, enterobactin and coelibactin pathways through the shikimate pathway, the source of their common precursor, chorismate.

4.
Genome Announc ; 2(4)2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24994793

ABSTRACT

Streptomyces sp. strain NTK 937 is the producer of the benzoxazole antibiotic caboxamycin, which has been shown to exert inhibitory activity against Gram-positive bacteria, cytotoxic activity against several human tumor cell lines, and inhibition of the enzyme phosphodiesterase. In this genome announcement, we present a draft genome sequence of Streptomyces sp. NTK 937 in which we identified at least 35 putative secondary metabolite biosynthetic gene clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...