Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37686914

ABSTRACT

Present worldwide difficulties in healthcare and the environment have motivated the investigation and research of novel materials in an effort to find novel techniques to address the current challenges and requirements. In particular, the use of nanomaterials has demonstrated a significant promise in the fight against bacterial infections and the problem of antibiotic resistance. Metal nanoparticles and carbon-based nanomaterials in particular have been highlighted for their exceptional abilities to inhibit many types of bacteria and pathogens. In order for these materials to be as effective as possible, synthetic techniques are crucial. Therefore, in this review article, we highlight some recent developments in the design and synthesis of various nanomaterials, including metal nanoparticles (e.g., Ag, Zn, or Cu), metal hybrid nanomaterials, and the synthesis of multi-metallic hybrid nanostructured materials. Following that, examples of these materials' applications in antimicrobial performance targeted at eradicating multi-drug resistant bacteria, material protection such as microbiologically influenced corrosion (MIC), or additives in construction materials have been described.

2.
Nanoscale Adv ; 5(17): 4415-4423, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37638153

ABSTRACT

This work investigates the potential utilization of Cu(i) as a reducing agent for the transformation of the platinum salt K2PtCl4, resulting in the production of stable nanoparticles. The synthesized nanoparticles exhibit a bimetallic composition, incorporating copper within their final structure. This approach offers a convenient and accessible methodology for the production of bimetallic nanostructures. The catalytic properties of these novel nanomaterials have been explored in various applications, including their use as artificial metalloenzymes and in the degradation of dyes. The findings underscore the significant potential of Cu(i)-mediated reduction in the development of functional nanomaterials with diverse catalytic applications.

3.
ACS Bio Med Chem Au ; 3(4): 349-358, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37599792

ABSTRACT

In this work, nanostructured copper materials have been designed, synthetized, and evaluated in order to produce a more efficient and sustainable copper bionanohybrid with catalytical and antimicrobial properties. Thus, conditions are sought where the most critical steps are reduced or minimized, such as the use of reducing agents or the cryogenization step. In addition, the new materials have been characterized through different techniques, and their oxidative and reductive capacities, as well as their antimicrobial activity, have been evaluated. The addition of different quantities of a reducing agent in the synthesis method generated copper bionanohybrids with different metallic species, nanoparticles sizes, and structures. The antimicrobial properties of the bionanohybrids were studied against different strains of Gram-positive and Gram-negative bacteria through two different methods: by counting the CFU and via the disk diffusion test, respectively. The bionanohybrids have demonstrated that different efficiencies depending on the bacterial strain were confronted with. The Cu-PHOS-100% R hybrids with the highest percentage of reduction showed the best antimicrobial efficiency against Escherichia coli and Klebsiella pneumoniae bacteria (>96 or >77% in 4 h, respectively) compared to 31% bacteria reduction using Cu-PHOS-0% R. Also, the antimicrobial activity against Bacillus subtilis materials was obtained with Cu-PHOS-100% R (31 mm inhibition zone and 125 µg/mL minimum inhibitory concentration value). Interestingly, the better antimicrobial activity of the nanobiohybrids against Gram-positive bacteria Mycobacterium smegmatis was obtained with some with a lower reduction step in the synthesis, Cu-PHOS-10% R or Cu-PHOS-20% R (>94% bacterial reduction in 4 h).

4.
ACS Appl Mater Interfaces ; 15(18): 22580-22589, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37116104

ABSTRACT

The current global pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has demonstrated the necessity to develop novel materials with antimicrobial and antiviral activities to prevent the infection. One significant route for the spread of diseases is by the transmission of the virus through contact with contaminated surfaces. Antiviral surface treatments can help to reduce or even avoid these hazards. In particular, the development of active-virucidal fabrics or paints represents a very important challenge with multiple applications in hospitals, public transports, or schools. Modern, cutting-edge methods for creating antiviral surface coatings use either materials with a metal base or sophisticated synthetic polymers. Even if these methods are effective, they will still face significant obstacles in terms of large-scale applicability. Here, we describe the preparation of fabrics and paints treated with a scaled-up novel nanostructured biohybrid material composed of very small crystalline phosphate copper(II) nanoparticles, synthesized based on a technology that employs the use of a small amount of biological agent for its formation at room temperature in aqueous media. We demonstrate the efficient inactivation of the human coronavirus 229E (HCoV-229E), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and non-enveloped human rhinovirus 14 (HRV-14) (>99.9%) using an inexpensive, ecologically friendly coating agent. The reactive oxygen species produced during the oxidation of water or the more intensive reaction with hydrogen peroxide are believed to be the cause of the antiviral mechanism of the nanostructured material. In contrast to the release of a specific antiviral drug, this process does not consume the surface coating and does not need regeneration. A 12-month aging research that revealed no decline in antiviral activity is proof that the coating is durable in ambient circumstances. Also, the coated fabric can be reused after different washing cycles, even at moderate to high temperatures.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Viruses , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/prevention & control
5.
Nanomaterials (Basel) ; 13(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36770410

ABSTRACT

In this work, Cu2O nanoparticles (NPs) were created in situ on graphene functionalized with Thermomyces lanuginosus lipase (G@TLL) where site-oriented supported TLL acted as template and binder in the presence of copper salt by tailorable synthesis under mild conditions, producing a heterogeneous catalyst. Cu2O NPs were confirmed by XRD and XPS. The TEM microscopy showed that the nanoparticles were homogeneously distributed over the G@TLL surface with sizes of 53 nm and 165 nm. This G@TLL-Cu2O hybrid was successfully used in the degradation of toxic organic compounds such as trichloroethylene (TCE) and Rhodamine B (RhB). In the case of TCE, the hybrid presented a high catalytic capacity, degrading 60 ppm of product in 60 min in aqueous solution and room temperature without the formation of other toxic subproducts. In addition, a TOF value of 7.5 times higher than the unsupported counterpart (TLL-Cu2O) was obtained, demonstrating the improved catalytic efficiency of the system in the solid phase. The hybrid also presented an excellent catalytic performance for the degradation of Rhodamine B (RhB) obtaining a complete degradation (48 ppm) in 50 min in aqueous solution and room temperature and with the presence of a green oxidant as H2O2.

6.
Nanoscale Adv ; 5(2): 513-521, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756272

ABSTRACT

The effect of the temperature in the synthesis of Pd nanoparticles in the metal-enzyme biohybrids is evaluated. The effect on the formation, size, and morphology of nanoparticles was evaluated using C. antarctica B lipase as the protein scaffold. XRD analyses confirmed the formation of crystalline Pd(0) as the metal species in all cases. TEM analyses revealed spherical crystalline nanoparticles with average diameter size from 2 nm at 4 °C synthesis to 10 nm obtained at 50 °C synthesis. The thermal phenomenon was also critical in the final hybrid formation using more complex enzymes, where the relation of the protein structure and temperature and the influence of the latter has been demonstrated to be critical in the reducing efficiency of the enzyme in the final Pd nanoparticle formation, in the metal species, or even in the final size of the nanoparticles. Different Pd biohybrids were evaluated as catalysts in the C-H activation of protected l-tryptophan under mild conditions. Pd@CALB4 showed the best results, with >99% conversion for C-2 arylation in methanol at room temperature with a TOF value of 64 min-1, being 2 or 4 times higher than that of the other synthesized hybrids. This catalyst showed a very high stability and recyclability, maintaining >95% activity after three cycles of use.

7.
ChemCatChem ; 14(16): e202200362, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36246043

ABSTRACT

Lipase/metal nanobiohybrids, generated by growth of silver or gold nanoparticles on protein matrixes are used as highly effective dual-activity heterogeneous catalysts for the production of enantiomerically enriched 2,5-dihydrofurans from allenic acetates in a one-pot cascade process combining a lipase-mediated hydrolytic kinetic resolution with a metal-catalyzed allene cycloisomerization. Incorporating a novel strategy based on enzyme-polymer bioconjugates in the nanobiohybrid preparation enables excellent conversions in the process. Candida antarctica lipase B (CALB) in combination with a dextran-based polymer modifier (DexAsp) proved to be most efficient when merged with silver nanoparticles. A range of hybrid materials were produced, combining Ag or Au metals with Thermomyces lanuginosus lipase (TLL) or CALB and its DexAsp or polyethyleneimine polymer bioconjugates. The wider applicability of the biohybrids is demonstrated by their use in allenic alcohol cyclizations, where a variety of dihydrofurans are obtained using a CALB/gold nanomaterial. These results underline the potential of the nanobiohybrid catalysis as promising approach to intricate one-pot synthetic strategies.

8.
Nanoscale ; 14(15): 5701-5715, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35343986

ABSTRACT

Novel hybrids containing silver or gold nanoparticles have been synthesized in aqueous media and at room temperature using enzymes or tailor-made enzyme-polymer conjugates, which directly induced the formation of inorganic silver or gold species. The choice of pH, protein, or bioconjugate strongly affected the final metallic nanoparticles hybrid formation. Using Candida antarctica lipase (CALB) in a solution, nanobiohybrids containing Ag2O nanoparticles of 9 nm average diameter were obtained. The use of tailor-made bioconjugates, for example, the CALB modified with dextran-aspartic acid polymer (Dext6kDa), resulted in a nanobiohybrid containing smaller Ag(0)/Ag2O nanoparticles. In the case of nanobiohybrids based on gold, Au(0) species were found in all cases. The Au-CALB hybrid contained spherical nanoparticles with 18 nm average diameter size, with a minor range of larger ones (>100 nm) while the AuNPs-CALB-Dext6kDa hybrid was formed by much smaller nanoparticles (9 nm, minor range of 22 nm), and also nanorods of 20-30/40-50 nm length. Using Thermomyces lanuginosus lipase (TLL), apart from the nanoparticle formation, nanoflowers with a diameter range of 100-200 nm were obtained. All nanobiohybrids maintained (dual) enzymatic and metallic activities. For instance, these nanobiohybrids exhibited exquisite dual-activity for hydrolysis/cycloisomerization cascades starting from allenic acetates. By merging the transition metal reactivity with the inherent lipase catalysis, allenic acetates directly converted to the corresponding O-heterocycles in enantiopure form catalysed by AgNPs-CALB-Dext6kDa, taking advantage of a kinetic resolution/cyclization pathway. These results showed the high applicability of these novel hybrids, offering new opportunities for the design of novel reaction cascades.


Subject(s)
Gold , Metal Nanoparticles , Catalysis , Lipase/metabolism , Polymers , Silver
9.
Nanomaterials (Basel) ; 11(7)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206886

ABSTRACT

Viruses are among the most infectious pathogens, responsible for the highest death toll around the world. Lack of effective clinical drugs for most viral diseases emphasizes the need for speedy and accurate diagnosis at early stages of infection to prevent rapid spread of the pathogens. Glycans are important molecules which are involved in different biological recognition processes, especially in the spread of infection by mediating virus interaction with endothelial cells. Thus, novel strategies based on nanotechnology have been developed for identifying and inhibiting viruses in a fast, selective, and precise way. The nanosized nature of nanomaterials and their exclusive optical, electronic, magnetic, and mechanical features can improve patient care through using sensors with minimal invasiveness and extreme sensitivity. This review provides an overview of the latest advances of functionalized glyconanomaterials, for rapid and selective biosensing detection of molecules as biomarkers or specific glycoproteins and as novel promising antiviral agents for different kinds of serious viruses, such as the Dengue virus, Ebola virus, influenza virus, human immunodeficiency virus (HIV), influenza virus, Zika virus, or coronavirus SARS-CoV-2 (COVID-19).

10.
ACS Appl Mater Interfaces ; 13(4): 5111-5124, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33472360

ABSTRACT

Artificial enzymes with modulated enzyme-mimicking activities of natural systems represent a challenge in catalytic applications. Here, we show the creation of artificial Cu metalloenzymes based on the generation of Cu nanoparticles in an enzyme matrix. Different enzymes were used, and the structural differences between the enzymes especially influenced the controlled the size of the nanoparticles and the environment that surrounds them. Herein, we demonstrated that the oxidase-like catalytic activity of these copper nanozymes was rationally modulated by enzyme used as a scaffold, with a special role in the nanoparticle size and their environment. In this sense, these nanocopper hybrids have confirmed the ability to mimic a unique enzymatic activity completely different from the natural activity of the enzyme used as a scaffold, such as tyrosinase-like activity or as Fenton catalyst, which has extremely higher stability than natural mushroom tyrosinase. More interestingly, the oxidoreductase-like activity of nanocopper hybrids was cooperatively modulated with the synergistic effect between the enzyme and the nanoparticles improving the catalase activity (no peroxidase activity). Additionally, a novel dual (metallic and enzymatic activity) of the nanozyme made the highly improved catechol-like activity interesting for the design of 3,4-dihydroxy-l-phenylalanine (l-DOPA) biosensor for detection of tyrosinase. These hybrids also showed cytotoxic activity against different tumor cells, interesting in biocatalytic tumor therapy.


Subject(s)
Biomimetic Materials/therapeutic use , Biosensing Techniques , Copper/therapeutic use , Nanoparticles/therapeutic use , Neoplasms/therapy , Bacteria/enzymology , Biocatalysis , Biomimetic Materials/chemistry , Biosensing Techniques/methods , Copper/chemistry , Enzyme Therapy/methods , Fungi/enzymology , Humans , Models, Molecular , Monophenol Monooxygenase/analysis , Nanoparticles/chemistry , Oxidoreductases/chemistry , Oxidoreductases/therapeutic use , Protein Conformation
11.
ACS Omega ; 5(9): 4362-4369, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32175483

ABSTRACT

Glycoderivatives are an important class of molecules with enormous relevance in numerous biological phenomena; therefore, they have a key role in the learning, understanding, and assessment of different diseases. Nanotechnology, and in particular the design of new nanomaterials, is one of the areas of greatest interest today. In this case, graphene nanomaterials represent very interesting platforms for studying glycosystems, glyconanomaterials that combine the biomolecular recognition and the characteristics of nanoscale objects in the development of early diagnosis systems, and efficient specific therapeutic modalities. In this mini-review, we discuss some results recently described in the literature on the conjugation of graphene materials and carbohydrates through the selective interaction of glycoenzymes in graphene to create new materials with biosensing applications, the development and application of sugar-graphene composites, and finally biosystems combining the properties of graphene with metallic nanoparticles and sugars for the creation of excellent glyconanomaterials as novel systems for the therapy or diagnosis of important diseases such as cancer or diabetes.

12.
Nanomaterials (Basel) ; 10(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861354

ABSTRACT

Copper nanoparticles-enzyme biohybrid is a promising material for the remediation of contaminated waters, but its function is influenced by its effect on degradation organic pollutants. This study is the first investigation into the fast degradation of a high amount of Bisphenol A (BPA) in water at neutral pH and room temperature. Four different CuNPs biohybrids with different cu species and nanoparticle sizes were used as catalysts. The biohybrid CuNPs@CALB-3, which contained Cu2O nanoparticles of around 10 nm size, showed excellent catalytic performance removing >95% BPA content (45 ppm) in an aqueous solution in 20 min in the presence of hydrogen peroxide at pH 8 using 1.5 g/L of a catalyst. The catalyst showed excellent stability and recyclability at these conditions.

13.
Nanomaterials (Basel) ; 9(9)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31546926

ABSTRACT

Biographene was successfully produced in water from graphite flakes by a simple, rapid, and efficient methodology based on a bioexfoliation technology. The methodology consisted in the application of a lipase, with a unique mechanism of interaction with hydrophobic surfaces, combined with a previous mechanical sonication, to selectively generate lipase-graphene sheets conjugates in water at room temperature. The adsorption of the lipase on the graphene sheets permits to keep the sheets separated in comparison with other methods. It was possible to obtain more than 80% of graphene (in the form of multi-layer graphene) from low-cost graphite and with less damage compared to commercial graphene oxide (GO) or reduced GO. Experimental analysis demonstrated the formation of multi-layer graphene (MLG) mainly using lipase from Thermomyces Lanuginosus (TLL).

SELECTION OF CITATIONS
SEARCH DETAIL
...