Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5257, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644018

ABSTRACT

The conversion of carbon-based solids, like non-recyclable plastics, biomass, and coal, into small molecules appears attractive from different points of view. However, the strong carbon-carbon bonds in these substances pose a severe obstacle, and thus-if such reactions are possible at all-high temperatures are required1-5. The Bergius process for coal conversion to hydrocarbons requires temperatures above 450 °C6, pyrolysis of different polymers to pyrolysis oil is also typically carried out at similar temperatures7,8. We have now discovered that efficient hydrogenation of different solid substrates with the carbon-based backbone to light hydrocarbons can be achieved at room temperature by ball milling. This mechanocatalytic method is surprisingly effective for a broad range of different carbon substrates, including even diamond. The reaction is found to proceed via a radical mechanism, as demonstrated by reactions in the presence of radical scavengers. This finding also adds to the currently limited knowledge in understanding mechanisms of reactions induced by ball milling. The results, guided by the insight into the mechanism, could induce more extended exploration to broaden the application scope and help to address the problem of plastic waste by a mechanocatalytic approach.

2.
Chemistry ; 27(49): 12451-12452, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34263488

ABSTRACT

Invited for the cover of this issue is Claudia Weidenthaler and co-workers at the Max-Planck-Institut für Kohlenforschung, Shenzhen University and Deutsches Elektronen Synchrotron. The image depicts the X-ray diffraction results showing the formation of ZnS and the subsequent phase transition from the hexagonal to the cubic modification. Read the full text of the article at 10.1002/chem.202101260.

3.
Chemistry ; 27(49): 12558-12565, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34062026

ABSTRACT

Mechanochemistry, as a synthesis tool for inorganic materials, became an ever-growing field in material chemistry. The direct energy transfer by collision of the educts with the milling media gives the possibility to design environmental-friendly reactions. Nevertheless, the underlying process of energy transfer and hence the kinetics of mechanosynthesis remain unclear. Herein, we present in situ synchrotron X-ray diffraction studies coupled with pressure measurements performed during the formation of ZnS and the subsequent phase transition (PT) from the hexagonal to the cubic modification. Milling Zn and S8 results in the sublimation of S8 , observed by a sudden pressure increase. Simultaneously, the hexagonal metastable ZnS-modification (wurtzite) forms. Via detection of the pressure maximum, the exact start of the wurtzite formation can be determined. Immediately after the formation of wurtzite, the structural PT to the thermodynamic stable cubic modification sphalerite takes place. This PT can be described by the Prout-Tompkins equation for autocatalytic reactions, similar to thermally induced PT in sulfur vapor at high temperatures (T>1133 K). The increase in the reactivity of the wurtzite formation is explained by the reaction in sulfur vapor and the induction of defect structures by the collisions with the milling media.

4.
Angew Chem Int Ed Engl ; 59(44): 19510-19517, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-32542978

ABSTRACT

Zeolites are becoming more versatile in their chemical functions through rational design of their frameworks. Therefore, direct imaging of all atoms at the atomic scale, basic units (Si, Al, and O), heteroatoms in the framework, and extra-framework cations, is needed. TEM provides local information at the atomic level, but the serious problem of electron-beam damage needs to be overcome. Herein, all framework atoms, including oxygen and most of the extra-framework Na cations, are successfully observed in one of the most electron-beam-sensitive and lowest framework density zeolites, Na-LTA. Zeolite performance, for instance in catalysis, is highly dependent on the location of incorporated heteroatoms. Fe single atomic sites in the MFI framework have been imaged for the first time. The approach presented here, combining image analysis, electron diffraction, and DFT calculations, can provide essential structural keys for tuning catalytically active sites at the atomic level.

5.
RSC Adv ; 10(35): 20928-20938, 2020 May 27.
Article in English | MEDLINE | ID: mdl-35517752

ABSTRACT

In this study the structure directing effect of a gemini-type piperidine-based multi-ammonium surfactant during hydrothermal zeolite synthesis was investigated for two cases: with and without a source of aluminum. The absence of an aluminum source led to the formation of an amorphous mesoporous MCM-48 type silica material, while the presence of aluminum guaranteed the formation of zeolite beta with a hierarchical pore system. The two opposing cases were studied in a time and temperature-dependent manner. The mobility and through space interaction of these large surfactant molecules were studied by liquid state nuclear magnetic resonance (NMR) at a temperature relevant to hydrothermal synthesis (363 K) in pure water and upon addition of an aluminum and silicon source. In the gel state, at different stages of aging and hydrothermal synthesis, low angle X-ray diffraction (XRD) and solid state magic angle spinning nuclear magnetic resonance (1H MAS NMR) spectrometry determined the developing order within the system. At each of these different synthesis steps the respective intermediate materials were calcined. Transmission electron microscopy then allowed closer inspection of the locally developing mesoscopic order, while N2 physisorption was used to follow the evolution of porosity.

6.
Chemphyschem ; 20(21): 2874-2880, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31502391

ABSTRACT

The understanding of major zeolite applications is partially based on diffusion of molecules inside or outside microporous networks. However, it is still a challenge to measure such phenomena. The diffusion ordered nuclear magnetic resonance spectroscopy (DOSY) technique has been reported to measure a probe molecule's diffusion inside porous solids. Pulsed-field gradient (PFG)-NMR has been used herein to measure the self-diffusivity of different probe molecules, such as neopentane, benzene, toluene and 1-dodecene with increasing dynamic diameter, respectively, on a series of H-ZSM-5 zeolites. The latter materials exhibit different crystal sizes, Si/Al ratios and the presence (or absence) of crystalline defects. In addition, shaped zeolite bodies representing industrial catalysts were compared with the afore-mentioned samples.

7.
Molecules ; 24(17)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484400

ABSTRACT

We report a varying temperature infrared spectroscopic (VTIR) study with partial deuterium isotopic exchange as a method for characterizing proton mobility in acidic materials. This VTIR technique permits the estimation of activation energies for proton diffusion. Different acidic materials comprising classical proton-conducting materials, such as transition metal phosphates and sulfonated solids, as well as different zeolites, are tested with this new method. The applicability of the method is thus extended to a vast library of materials. Its underlying principles and assumptions are clearly presented herein. Depending on the temperature ranges, different activation energies for proton transfer are observed irrespective of the different materials. In addition to the well-studied transition metal phosphates, Si-rich zeolites appear to be promising proton-transfer materials (with Eact < 40 kJ mol-1) for application in high-temperature (>150 °C) PEM fuel cells. They significantly outperform Nafion and sulfonated silica, which exhibit higher activation energies with Eact ~ 50 and 120 kJ mol-1, respectively.


Subject(s)
Spectrophotometry, Infrared/methods , Zeolites/chemistry , Adsorption , Protons , Temperature
8.
J Am Chem Soc ; 141(28): 11212-11218, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31260287

ABSTRACT

State-of-the-art processes to directly convert methane into CH3Cl are run under corrosive conditions and typically yield a mixture of chloromethanes requiring subsequent separation. We report a mechanochemical strategy to selectively convert methane to chloromethane under overall benign conditions, employing trichloroisocyanuric acid (TCCA) as a cheap and noncorrosive solid chlorinating agent. TCCA is shown to release active chlorine species upon milling with Lewis acids such as alumina and ceria to functionalize methane at moderate temperatures (<150 °C). A thorough parameter optimization led to a maximum methane chlorination rate of 0.8 µmol(CH4,conv) (g(catalyst) s)-1. Findings were compared to the thermal reaction of methane with TCCA and evidenced that mechanochemical activation permitted significantly lower reaction temperatures (90 vs 200 °C) at a drastically improved CH3Cl selectivity (95% vs 66% at 30% conversion). Considering the characterization of the interaction between TCCA and Lewis acids as well as the in-depth analysis of byproducts, we suggest a plausible reaction mechanism and a possible regeneration of the chlorinating agent.

9.
J Am Chem Soc ; 140(50): 17790-17799, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30495943

ABSTRACT

The intrinsic Brønsted acid strength in solid acids relates to the energy required to separate a proton from a conjugate base, for example a negatively charged zeolite framework. The reliable characterization of zeolites' intrinsic acidity is fundamental to the understanding of acid catalysis and setting in relation solid Brønsted acids with their activity and selectivity. Here, we report an infrared spectroscopic study with partial isotopic deuterium exchange of a series of 15 different acidic aluminosilicate materials, including ZSM-5 zeolites with very few defects. Varying Temperature Infrared spectroscopy (VTIR) permitted estimating activation energies for proton diffusion. Two different proton transfer mechanisms have been distinguished for two different temperature ranges. Si-rich zeolites appeared to be promising proton-transfer materials ( Eact. < 40 kJ mol-1) at temperatures above 150 °C (423 K). Further, a linear bathochromic shift of the Si-(OD)-Al stretching vibration as a function of temperature was observed. It can be assumed that this red-shift is related to the intrinsic O-(H/D) bond strength. This observation allowed the extrapolation and estimation of precise v(O-D)@0 K values, which could be attributed to distinct crystallographic locations through Density Functional Theory (DFT) calculations. The developed method was used to reliably determine the likelihood of the position of a proton in ZSM-5 zeolites under catalytically relevant conditions ( T > 423 K), which has so far never been achieved by any other technique.

10.
Chem Sci ; 9(31): 6532-6539, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30310584

ABSTRACT

A family of Al-rich ZSM-5 zeolites with Si/Al = 8 ± 0.5 was prepared according to a biomass-mediated supramolecular approach. A combination of advanced characterisation techniques and periodic density functional theory (DFT) calculations unraveled the purity and stability of un-expected Al-enriched ZSM-5 structures, hence allowing to cross the frontier of Si/Al lower limit. In addition, these Al-rich ZSM-5 zeolites demonstrated high catalytic activity in n-hexane cracking and methanol conversion into hydrocarbons, being in line with the presence of numerous Brønsted acid sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...