Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 27(1): 71-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23036922

ABSTRACT

A range of adverse, early life environmental influences such as viral infection and social deprivation are thought to increase risk of psychiatric illness later in life. Here, we used peripheral administration of the viral infection mimic polyriboinosinic-polyribocytidylic acid (polyI:C) to compare the consequences of peripubertal infection and isolation rearing. Isolation rearing induced deficits in sensorimotor gating and recognition memory while no changes in social interaction or spatial learning were observed. PolyI:C injection during the peripubertal period markedly increased expression of interferon-stimulated genes (Ifit2, Prkr, Mx2 and Irf7) in the hippocampal dentate gyrus demonstrating that peripheral administration of the viral mimic in the adolescent animal does have direct effects in the brain. Peripubertal infection mimicry induced a similar but later emerging behavioural deficit in prepulse inhibition implying the existence of a peripubertal window of opportunity for viral-mediated cytokine increases to impact brain development and function. PolyI:C treatment also impaired novel object recognition but did not alter spatial reference memory or social interaction. Combining the polyI:C challenge with social isolation did not exacerbate the behavioural deficits seen with isolation rearing alone. Using Irf7 as a marker, peripubertal viral infection mimicry, isolation rearing and a combination of both were all seen to produce a long-lasting molecular imprint on the interferon-associated signalling pathway in the principal neuron population of the hippocampal dentate gyrus. The data suggest that the sensitivity of brain structure and function to disruption by viral infection extends into the peripubertal period. Moreover, augmented interferon signalling in hippocampus may represent a common molecular imprint of environmental insults associated with neuropsychiatric illnesses like schizophrenia.


Subject(s)
Behavior, Animal , Dentate Gyrus , Interferon Inducers/pharmacology , Interferon Regulatory Factor-7 , Interferons/metabolism , Poly I-C/pharmacology , Virus Diseases/metabolism , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , GTP-Binding Proteins/drug effects , GTP-Binding Proteins/metabolism , Interferon Regulatory Factor-7/drug effects , Interferon Regulatory Factor-7/metabolism , Male , Myxovirus Resistance Proteins , Rats , Rats, Wistar , Sensory Gating/drug effects , Sensory Gating/physiology , Sexual Maturation/physiology , Social Isolation
2.
Proteomics ; 11(21): 4189-201, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22002935

ABSTRACT

Information storage in the brain depends on the ability of neurons to alter synaptic connectivity within key circuitries such as the hippocampus. Memory-associated synaptic plasticity is mediated by a temporal cascade of de novo protein synthesis and altered protein processing. Here, we have used two-dimensional difference in gel electrophoresis (2-D DIGE) to investigate memory-specific protein changes in the hippocampal dentate gyrus at increasing times following spatial learning. We identified 42 proteins that were significantly regulated in the first 24 h of spatial memory consolidation. Two distinct waves of protein expression regulation were evident, at 3 and 12 h post-learning and this is in agreement with studies employing inhibitors of global translation. Functional classification of the memory-associated proteins revealed that the majority of regulated proteins contributed either to cellular structure or cellular metabolism. For example, actins, tubulins and intermediate filament proteins, core proteins of the three major cytoskeletal components, were dynamically regulated at times that suggest a role in memory-associated synaptic reorganization. Increased proteasome-mediated protein degradation was evident in the early post-training period including the down-regulation of phosphoprotein enriched in astrocytes 15 kDa, a key inhibitor of extracellular signal-regulated kinase signaling. Some of the most substantial protein expression changes were observed for secreted carrier proteins including transthyretin and serum albumin at 6-12 h post-learning, regulations that could serve an important role in increasing the supply of retinoic acid and thyroid hormone, key synaptic plasticity-promoting signals in the adult brain. Together these observations provide further insight into protein level regulations occurring in the hippocampus during spatial memory consolidation.


Subject(s)
Dentate Gyrus/metabolism , Maze Learning , Proteome/metabolism , Proteomics , Animals , Apoptosis Regulatory Proteins , Gene Expression Regulation , Male , Memory , Phosphoproteins/genetics , Phosphoproteins/metabolism , Prealbumin/genetics , Prealbumin/metabolism , Proteome/genetics , Rats , Rats, Wistar , Serum Albumin/genetics , Serum Albumin/metabolism , Two-Dimensional Difference Gel Electrophoresis
3.
J Neurochem ; 113(3): 601-14, 2010 May.
Article in English | MEDLINE | ID: mdl-20096092

ABSTRACT

The critical sequence of molecular, neurotransmission and synaptic disruptions that underpin the emergence of psychiatric disorders like schizophrenia remain to be established with progress only likely using animal models that capture key features of such disorders. We have related the emergence of behavioural, neurochemical and synapse ultrastructure deficits to transcriptional dysregulation in the medial prefrontal cortex of Wistar rats reared in isolation. Isolation reared animals developed sensorimotor deficits at postnatal day 60 which persisted into adulthood. Analysis of gene expression prior to the emergence of the sensorimotor deficits revealed a significant disruption in transcriptional control, notably of immediate early and interferon-associated genes. At postnatal day 60 many gene transcripts relating particularly to GABA transmission and synapse structure, for example Gabra4, Nsf, Syn2 and Dlgh1, transiently increased expression. A subsequent decrease in genes such as Gria2 and Dlgh2 at postnatal day 80 suggested deficits in glutamatergic transmission and synapse integrity, respectively. Microdialysis studies revealed decreased extracellular glutamate suggesting a state of hypofrontality while ultrastructural analysis showed total and perforated synapse complement in layer III to be significantly reduced in the prefrontal cortex of postnatal day 80 isolated animals. These studies provide a molecular framework to understand the developmental emergence of the structural and behavioural characteristics that may in part define psychiatric illness.


Subject(s)
Cerebral Cortex/metabolism , Gene Expression Regulation/physiology , Social Isolation/psychology , Animals , Behavior, Animal/physiology , Cerebral Cortex/chemistry , Cerebral Cortex/ultrastructure , Computational Biology , DNA/biosynthesis , DNA/genetics , Male , Microdialysis , Motor Activity/physiology , Multigene Family , Oligonucleotide Array Sequence Analysis , RNA/biosynthesis , RNA/genetics , RNA, Complementary/biosynthesis , RNA, Complementary/genetics , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Stress, Psychological/genetics , Stress, Psychological/psychology , Synapses/physiology , Transcription Factors
4.
Cereb Cortex ; 20(8): 1915-25, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20016002

ABSTRACT

Expressed throughout the central nervous system, the myocardin-related, megakaryoblastic acute leukemia 1 and 2 (Mkl1/2) are transcriptional cofactors that can be found tethered in the cytoplasm to monomeric actin but on synaptic activation translocate to the nucleus and associate with transcription factors such as serum response factor (SRF) to regulate expression of structural genes. This implies a potential role for Mkls in linking synaptic activity, through gene-expression control, to neuronal structural plasticity. Here, we present evidence that Mkls, particularly Mkl2, are powerful regulators of neuronal structure in vitro. Moreover, using the passive avoidance-conditioning paradigm, we identify learning-associated alterations of neuronal Mkl expression that appear to contribute to 2 phases of gene regulation during memory consolidation in the hippocampus. Gene regulation immediately after learning includes Egr2 and may be facilitated by downregulation of Mkls likely releasing ternary complex factor-regulated SRF activity. The second transcriptional phase occurs later at the 3-h postavoidance time point when Mkl accumulates in the nucleus of hippocampal neurons and there is enhanced transcription of Mkl-dependent structural genes that may contribute to the elaboration of new, memory-associated synapses known to appear over the subsequent 3-h period.


Subject(s)
Hippocampus/metabolism , Kinesins/physiology , Neuronal Plasticity/physiology , Neurons/metabolism , Transcription Factors/physiology , Animals , Avoidance Learning/physiology , Cell Differentiation/physiology , Early Growth Response Protein 2/genetics , Early Growth Response Protein 2/metabolism , Gene Expression Regulation, Developmental/genetics , Hippocampus/cytology , Male , Memory/physiology , Neuronal Plasticity/genetics , Neurons/cytology , Protein Transport/genetics , Rats , Rats, Wistar , Synaptic Transmission/genetics , Transcription Factors/genetics
5.
J Neurochem ; 112(4): 991-1004, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20002519

ABSTRACT

Long-term memory is formed by alterations in glutamate-dependent excitatory synaptic transmission, which is in turn regulated by synaptosomal protein of 25 kDa (SNAP-25), a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex essential for exocytosis of neurotransmitter-filled synaptic vesicles. Both reduced and excessive SNAP-25 activity has been implicated in various disease states that involve cognitive dysfunctions such as attention deficit hyperactivity disorder, schizophrenia and Alzheimer's disease. Here, we over-express SNAP-25 in the adult rat dorsal hippocampus by infusion of a recombinant adeno-associated virus vector, to evaluate the consequence of late adolescent-adult dysfunction of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein in the absence of developmental disruption. We report a specific and significant increase in the levels of extracellular glutamate detectable by microdialysis and a reduction in paired-pulse facilitation in the hippocampus. In addition, SNAP-25 over-expression produced cognitive deficits, delaying acquisition of a spatial map in the water maze and impairing contextual fear conditioning, both tasks known to be dorsal hippocampal dependent. The high background transmission state and pre-synaptic dysfunction likely result in interference with requisite synapse selection during spatial and fear memory consolidation. Together these studies provide the first evidence that excess SNAP-25 activity, restricted to the adult period, is sufficient to mediate significant deficits in the memory formation process.


Subject(s)
Gene Expression Regulation/physiology , Hippocampus/metabolism , Memory Disorders , Neuronal Plasticity/physiology , Synaptosomal-Associated Protein 25/metabolism , Animals , Avoidance Learning/physiology , Biophysics/methods , Cell Line, Transformed , Conditioning, Classical/physiology , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Electric Stimulation/methods , Exploratory Behavior/physiology , Flow Cytometry/methods , Glutamic Acid/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hippocampus/physiology , Humans , In Vitro Techniques , Male , Maze Learning/physiology , Memory Disorders/metabolism , Memory Disorders/pathology , Memory Disorders/physiopathology , Microdialysis/methods , Neural Inhibition/physiology , Rats , Rats, Wistar , Synaptosomal-Associated Protein 25/genetics , Transduction, Genetic/methods , Transfection/methods
6.
Eur J Neurosci ; 28(3): 419-27, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18702715

ABSTRACT

The prefrontal cortex (PFC) is an interconnected set of cortical areas that function in the synthesis of a diverse range of information and production of complex behaviour. It is now clear that these frontal structures, through bidirectional excitatory communication with the hippocampal formation, also play a substantial role in long-term memory consolidation. In the hippocampus, morphological synaptic plasticity, supported by regulation of neural cell adhesion molecule (NCAM) polysialylation status, is crucial to information storage. The recent description of polysialylated neurons in the various fields of the medial PFC suggests these structures to possess a similar capacity for synaptic plasticity. Here, using double-labelling immunohistochemistry with glutamic acid decarboxylase 67, we report that the nature of NCAM polysialic acid-positive neurons in the PFC is region-specific, with a high proportion (30-50%) of a gamma-aminobutyric acid (GABA)ergic phenotype in the more ventral infralimbic, orbitofrontal and insular cortices compared with just 10% in the dorsal structures of the cingulate, prelimbic and frontal cortices. Moreover, spatial learning was accompanied by activations in polysialylation expression in ventral PFC structures, while avoidance conditioning involved downregulation of this plasticity marker that was restricted to the dorsomedial PFC--the cingulate and prelimbic cortices. Thus, in contrast to other structures integrated functionally with the hippocampus, memory-associated plasticity mobilized in the PFC is region-, cell type- and task-specific.


Subject(s)
Learning/physiology , Neural Cell Adhesion Molecule L1/metabolism , Neuronal Plasticity/physiology , Prefrontal Cortex , Sialic Acids/metabolism , Animals , Humans , Male , Neural Cell Adhesion Molecule L1/chemistry , Neurons/cytology , Neurons/physiology , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Rats , Rats, Wistar , Sialic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...