Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
BMC Cancer ; 23(1): 1153, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012567

ABSTRACT

Chronic myeloid leukemia (CML) is effectively treated with tyrosine kinase inhibitors (TKIs), targeting the BCR::ABL1 oncoprotein. Still, resistance to therapy, relapse after treatment discontinuation, and side effects remain significant issues of long-term TKI treatment. Preliminary studies have shown that targeting oxidative phosphorylation (oxPhos) and the unfolded protein response (UPR) are promising therapeutic approaches to complement CML treatment. Here, we tested the efficacy of different TKIs, combined with the ATP synthase inhibitor oligomycin and the ER stress inducer thapsigargin in the CML cell lines K562, BV173, and KU812 and found a significant increase in cell death. Both, oligomycin and thapsigargin, triggered the upregulation of the UPR proteins ATF4 and CHOP, which was inhibited by imatinib. We observed comparable effects on cell death when combining TKIs with the ATP synthase inhibitor 8-chloroadenosine (8-Cl-Ado) as a potentially clinically applicable therapeutic agent. Stress-related apoptosis was triggered via a caspase cascade including the cleavage of caspase 3 and the inactivation of poly ADP ribose polymerase 1 (PARP1). The inhibition of PARP by olaparib also increased CML death in combination with TKIs. Our findings suggest a rationale for combining TKIs with 8-Cl-Ado or olaparib for future clinical studies in CML.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Fusion Proteins, bcr-abl , Oxidative Phosphorylation , Thapsigargin/pharmacology , Thapsigargin/therapeutic use , Drug Resistance, Neoplasm , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Oligomycins/pharmacology , Adenosine Triphosphate/metabolism , Apoptosis
2.
Front Oncol ; 13: 1060112, 2023.
Article in English | MEDLINE | ID: mdl-36874131

ABSTRACT

One of the key challenges for successful cancer therapy is the capacity of tumors to evade immune surveillance. Tumor immune evasion can be accomplished through the induction of T cell exhaustion via the activation of various immune checkpoint molecules. The most prominent examples of immune checkpoints are PD-1 and CTLA-4. Meanwhile, several other immune checkpoint molecules have since been identified. One of these is the T cell immunoglobulin and ITIM domain (TIGIT), which was first described in 2009. Interestingly, many studies have established a synergistic reciprocity between TIGIT and PD-1. TIGIT has also been described to interfere with the energy metabolism of T cells and thereby affect adaptive anti-tumor immunity. In this context, recent studies have reported a link between TIGIT and the hypoxia-inducible factor 1-α (HIF1-α), a master transcription factor sensing hypoxia in several tissues including tumors that among others regulates the expression of metabolically relevant genes. Furthermore, distinct cancer types were shown to inhibit glucose uptake and effector function by inducing TIGIT expression in CD8+ T cells, resulting in an impaired anti-tumor immunity. In addition, TIGIT was associated with adenosine receptor signaling in T cells and the kynurenine pathway in tumor cells, both altering the tumor microenvironment and T cell-mediated immunity against tumors. Here, we review the most recent literature on the reciprocal interaction of TIGIT and T cell metabolism and specifically how TIGIT affects anti-tumor immunity. We believe understanding this interaction may pave the way for improved immunotherapy to treat cancer.

3.
J Immunother Cancer ; 11(3)2023 03.
Article in English | MEDLINE | ID: mdl-36898735

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment option for a number of hemato-oncological disorders. In fact, allo-HSCT is considered as one of the most successful immunotherapies as its clinical efficacy is based on the donor T-cells' capacity to control residual disease. This process is known as the graft-versus-leukemia (GvL) reaction. However, alloreactive T-cells can also recognize the host as foreign and trigger a systemic potentially life-threatening inflammatory disorder termed graft-versus-host disease (GvHD). A better understanding of the underlying mechanisms that lead to GvHD or disease relapse could help us to improve efficacy and safety of allo-HSCT. In recent years, extracellular vesicles (EVs) have emerged as critical components of intercellular crosstalk. Cancer-associated EVs that express the immune checkpoint molecule programmed death-ligand 1 (PD-L1) can suppress T-cell responses and thus contribute to immune escape. At the same time, it has been observed that inflammation triggers PD-L1 expression as part of a negative feedback network.Here, we investigated whether circulating EVs following allo-HSCT express PD-L1 and tested their efficacy to suppress the ability of (autologous) T-cells to effectively target AML blasts. Finally, we assessed the link between PD-L1 levels on EVs to (T-)cell reconstitution, GvHD, and disease relapse.We were able to detect PD-L1+ EVs that reached a peak PD-L1 expression at 6 weeks post allo-HSCT. Development of acute GvHD was linked to the emergence of PD-L1high EVs following allo-HSCT. Moreover, PD-L1 levels correlated positively with GvHD grade and declined (only) on successful therapeutic intervention. T-cell-inhibitory capacity was higher in PD-L1high EVs as compared with their PD-L1low counterparts and could be antagonized using PD-L1/PD-1 blocking antibodies. Abundance of T-cell-suppressive PD-L1high EVs appears to also impact GvL efficacy as patients were at higher risk for relapse. Finally, patients of PD-L1high cohort displayed a reduced overall survival.Taken together, we show that PD-L1-expressing EVs are present following allo-HSCT. PD-L1 levels on EVs correlate with their ability to suppress T-cells and the occurrence of GvHD. The latter observation may indicate a negative feedback mechanism to control inflammatory (GvHD) activity. This intrinsic immunosuppression could subsequently promote disease relapse.


Subject(s)
Extracellular Vesicles , Graft vs Host Disease , Leukemia , Humans , T-Lymphocytes , B7-H1 Antigen/metabolism , Transplantation, Homologous/adverse effects , Leukemia/etiology , Extracellular Vesicles/metabolism
4.
Biomolecules ; 12(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-36139021

ABSTRACT

Nowadays, T-cell-based approaches play an increasing role in cancer treatment. In particular, the use of (genetically engineered) T-cells has heralded a novel era for various diseases with previously poor outcomes. Concurrently, the relationship between the functional behavior of immune cells and their metabolic state, known as immunometabolism, has been found to be an important determinant for the success of immunotherapy. In this context, immune cell metabolism is not only controlled by the expression of transcription factors, enzymes and transport proteins but also by nutrient availability and the presence of intermediate metabolites. The lack of as well as an oversupply of nutrients can be detrimental and lead to cellular dysfunction and damage, potentially resulting in reduced metabolic fitness and/or cell death. This review focusses on the detrimental effects of excessive exposure of T cells to fatty acids, known as lipotoxicity, in the context of an altered lipid tumor microenvironment. Furthermore, implications of T cell-related lipotoxicity for immunotherapy will be discussed, as well as potential therapeutic approaches.


Subject(s)
Neoplasms , Carrier Proteins/metabolism , Fatty Acids/metabolism , Humans , Immunotherapy/methods , Neoplasms/metabolism , T-Lymphocytes , Transcription Factors/metabolism , Tumor Microenvironment
5.
Cells ; 11(14)2022 07 12.
Article in English | MEDLINE | ID: mdl-35883619

ABSTRACT

Background: Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of malignant B-cells and multiple immune defects. This leads, among others, to severe infectious complications and inefficient immune surveillance. T-cell deficiencies in CLL include enhanced immune(-metabolic) exhaustion, impaired activation and cytokine production, and immunological synapse malformation. Several studies have meanwhile reported CLL-cell-T-cell interactions that culminate in T-cell dysfunction. However, the complex entirety of their interplay is incompletely understood. Here, we focused on the impact of CLL cell-derived vesicles (EVs), which are known to exert immunoregulatory effects, on T-cell function. Methods: We characterized EVs secreted by CLL-cells and determined their influence on T-cells in terms of survival, activation, (metabolic) fitness, and function. Results: We found that CLL-EVs hamper T-cell viability, proliferation, activation, and metabolism while fostering their exhaustion and formation of regulatory T-cell subsets. A detailed analysis of the CLL-EV cargo revealed an abundance of immunological checkpoints (ICs) that could explain the detected T-cell dysregulations. Conclusions: The identification of a variety of ICs loaded on CLL-EVs may account for T-cell defects in CLL patients and could represent a barrier for immunotherapies such as IC blockade or adoptive T-cell transfer. Our findings could pave way for improving antitumor immunity by simultaneously targeting EV formation or multiple ICs.


Subject(s)
Extracellular Vesicles , Leukemia, Lymphocytic, Chronic, B-Cell , Extracellular Vesicles/pathology , Humans , Immunotherapy, Adoptive , Lymphocyte Activation , T-Lymphocyte Subsets
6.
Immunology ; 163(1): 86-97, 2021 05.
Article in English | MEDLINE | ID: mdl-33427298

ABSTRACT

IL-33 is a member of the IL-1 family. By binding to its receptor ST2 (IL-33R) on mast cells, IL-33 induces the MyD88-dependent activation of the TAK1-IKK2 signalling module resulting in activation of the MAP kinases p38, JNK1/2 and ERK1/2, and of NFκB. Depending on the kinases activated in these pathways, the IL-33-induced signalling is essential for production of IL-6 or IL-2. This was shown to control the dichotomy between RORγt+ and Helios+ Tregs , respectively. SCF, the ligand of c-Kit (CD117), can enhance these effects. Here, we show that IL-3, another growth factor for mast cells, is essential for the expression of ICOS-L on BMMCs, and costimulation with IL-3 potentiated the IL-33-induced IL-6 production similar to SCF. In contrast to the enhanced IL-2 production by SCF-induced modulation of the IL-33 signalling, IL-3 blocked the production of IL-2. Consequently, IL-3 shifted the IL-33-induced Treg dichotomy towards RORγt+ Tregs at the expense of RORγt- Helios+ Tregs . However, ICOS-L expression was downregulated by IL-33. In line with that, ICOS-L did not play any important role in the Treg modulation by IL-3/IL-33-activated mast cells. These findings demonstrate that different from the mast cell growth factor SCF, IL-3 can alter the IL-33-induced and mast cell-dependent regulation of Treg subpopulations by modulating mast cell-derived cytokine profiles.


Subject(s)
Inducible T-Cell Co-Stimulator Ligand/metabolism , Interleukin-33/pharmacology , Interleukin-3/pharmacology , Interleukin-6/metabolism , Mast Cells/drug effects , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Paracrine Communication/drug effects , T-Lymphocytes, Regulatory/drug effects , Animals , Cells, Cultured , Coculture Techniques , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Phenotype , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
8.
Cancer Res ; 80(17): 3663-3676, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32605996

ABSTRACT

Acute myeloid leukemia (AML) represents the most common acute leukemia among adults. Despite recent progress in diagnosis and treatment, long-term outcome remains unsatisfactory. The success of allogeneic stem cell transplantation underscores the immunoresponsive nature of AML, creating the basis for further exploiting immunotherapies. However, emerging evidence suggests that AML, similar to other malignant entities, employs a variety of mechanisms to evade immunosurveillance. In light of this, T-cell inhibitory myeloid-derived suppressor cells (MDSC) are gaining interest as key facilitators of immunoescape. Accumulation of CD14+HLA-DRlow monocytic MDSCs has been described in newly diagnosed AML patients, and deciphering the underlying mechanisms could help to improve anti-AML immunity. Here, we report that conventional monocytes readily take-up AML-derived extracellular vesicles (EV) and subsequently undergo MDSC differentiation. They acquired an CD14+HLA-DRlow phenotype, expressed the immunomodulatory indoleamine-2,3-dioxygenase, and upregulated expression of genes characteristic for MDSCs, such as S100A8/9 and cEBPß. The Akt/mTOR pathway played a critical role in the AML-EV-induced phenotypical and functional transition of monocytes. Generated MDSCs displayed a glycolytic switch, which rendered them more susceptible toward glycolytic inhibitors. Furthermore, palmitoylated proteins on the AML-EV surface activated Toll-like receptor 2 as the initiating event of Akt/mTOR-dependent induction of MDSC. Therefore, targeting protein palmitoylation in AML blasts could block MDSC accumulation to improve immune responses. SIGNIFICANCE: These findings indicate that targeting protein palmitoylation in AML could interfere with the leukemogenic potential and block MDSC accumulation to improve immunity.


Subject(s)
Extracellular Vesicles/metabolism , Leukemia, Myeloid, Acute/pathology , Myeloid-Derived Suppressor Cells/pathology , Signal Transduction/physiology , Tumor Escape/physiology , Adult , Aged , Cell Differentiation/physiology , Cells, Cultured , Extracellular Vesicles/immunology , Female , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Lipoylation , Male , Middle Aged , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Toll-Like Receptor 2/metabolism
9.
Oncotarget ; 9(17): 13125-13138, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29568345

ABSTRACT

T-cell-based therapies represent a promising strategy for cancer treatment. In this context, cytokines are discussed as a bona fide instrument for fine-tuning T- cell biology. One promising candidate is the pleiotropic interleukin-21 (IL-21) with only little being known regarding its direct effects on human T-cells. Thus, we sought out to characterize the impact of IL-21 on T-cell metabolism, fitness, and differentiation. Culturing T-cells in presence of IL-21 elicited a metabolic skewing away from aerobic glycolysis towards fatty acid oxidation (FAO). These changes of the metabolic framework were paralleled by increased mitochondrial fitness and biogenesis. However, oxidative stress levels were not increased but rather decreased. Furthermore, elevated FAO and mitochondrial biomass together with enhanced antioxidative properties are linked to formation of longer lasting memory responses and less PD-1 expression. We similarly observed an IL-21-triggered induction of central memory-like T-cells and reduced levels of PD-1 on the cell surface. Taken together, IL-21 shifts T-cells towards an immunometabolic phenotype that has been associated with increased survivability and enhanced anti-tumor efficacy. In addition, our data reveals a novel interconnection between fatty acid metabolism and immune function regulated by IL 21.

10.
Stem Cells ; 34(2): 516-21, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26485560

ABSTRACT

Mesenchymal stromal cells (MSCs) possess numerous regenerative and immune modulating functions. Transplantation across histocompatibility barriers is feasible due to their hypo-immunogenicity. MSCs have emerged as promising tools for treating graft-versus-host disease following allogeneic stem cell transplantation. It is well established that their clinical efficacy is substantially attributed to fine-tuning of T-cell responses. At the same time, increasing evidence suggests that metabolic processes control T-cell function and fate. Here, we investigated the MSCs' impact on the metabolic framework of activated T-cells. In fact, MSCs led to mitigated mTOR signaling. This phenomenon was accompanied by a weaker glycolytic response (including glucose uptake, glycolytic rate, and upregulation of glycolytic machinery) toward T-cell activating stimuli. Notably, MSCs express indoleamine-2,3-dioxygenase (IDO), which mediates T-cell suppressive tryptophan catabolism. Our observations suggest that IDO-induced tryptophan depletion interferes with a tryptophan-sufficiency signal that promotes cellular mTOR activation. Despite an immediate suppression of T-cell responses, MSCs foster a metabolically quiescent T-cell phenotype characterized by reduced mTOR signaling and glycolysis, increased autophagy, and lower oxidative stress levels. In fact, those features have previously been shown to promote generation of long-lived memory cells and it remains to be elucidated how MSC-induced metabolic effects shape in vivo T-cell immunity.


Subject(s)
Glycolysis/immunology , Lymphocyte Activation , Mesenchymal Stem Cells/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , TOR Serine-Threonine Kinases/immunology , Female , Humans , Immunity, Cellular , Male , Mesenchymal Stem Cells/cytology , T-Lymphocytes/cytology
11.
Oncotarget ; 6(30): 28833-50, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26353931

ABSTRACT

NF-κB activation depends on the IKK complex consisting of the catalytically active IKK1 and 2 subunits and the scaffold protein NEMO. Hitherto, IKK2 activation has always been associated with IκBα degradation, NF-κB activation, and cytokine production. In contrast, we found that in SCF-stimulated primary bone marrow-derived mast cells (BMMCs), IKK2 is alternatively activated. Mechanistically, activated TAK1 mediates the association between c-Kit and IKK2 and therefore facilitates the Lyn-dependent IKK2 activation which suffices to mediate mitogenic signaling but, surprisingly, does not result in NF-κB activation. Moreover, the c-Kit-mediated and Lyn-dependent IKK2 activation is targeted by MyD88-dependent pathways leading to enhanced IKK2 activation and therefore to potentiated effector functions. In neoplastic cells, expressing constitutively active c-Kit mutants, activated TAK1 and IKKs do also not induce NF-κB activation but mediate uncontrolled proliferation, resistance to apoptosis and enables IL-33 to mediate c-Kit-dependent signaling. Together, we identified the formation of the c-Kit-Lyn-TAK1 signalosome which mediates IKK2 activation. Unexpectedly, this IKK activation is uncoupled from the NF-κB-machinery but is critical to modulate functional cell responses in primary-, and mediates uncontrolled proliferation and survival of tumor-mast cells. Therefore, targeting TAK1 and IKKs might be a novel approach to treat c-Kit-driven diseases.


Subject(s)
I-kappa B Kinase/metabolism , MAP Kinase Kinase Kinases/metabolism , Mast Cells/drug effects , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction/drug effects , Stem Cell Factor/pharmacology , Animals , Apoptosis , Cell Differentiation , Cell Proliferation , Dose-Response Relationship, Drug , Enzyme Activation , Genotype , HEK293 Cells , Humans , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/deficiency , I-kappa B Kinase/genetics , Interleukin-33/metabolism , MAP Kinase Kinase Kinases/genetics , Mast Cells/enzymology , Mast Cells/pathology , Mice, Knockout , Mutation , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Neoplasms/enzymology , Neoplasms/genetics , Neoplasms/pathology , Phenotype , Primary Cell Culture , Protein Binding , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/genetics , Time Factors , Transfection , src-Family Kinases/genetics , src-Family Kinases/metabolism
12.
Oncotarget ; 6(7): 5354-68, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25749030

ABSTRACT

Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca²âº-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term "subthreshold IKK activation".This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33.We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo.Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure.


Subject(s)
Cell Transformation, Neoplastic/pathology , I-kappa B Kinase/metabolism , Interleukin-3/pharmacology , Mast Cells/pathology , NF-kappa B/metabolism , Animals , Apoptosis/drug effects , Blotting, Western , Bone Marrow/drug effects , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Homeodomain Proteins/physiology , Humans , I-kappa B Kinase/genetics , Male , Mast Cells/drug effects , Mast Cells/metabolism , Mice , Mice, Inbred DBA , Mice, Knockout , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 8/metabolism , NF-kappa B/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...