Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Part Fibre Toxicol ; 12: 18, 2015 Jun 27.
Article in English | MEDLINE | ID: mdl-26116549

ABSTRACT

BACKGROUND: The lung epithelial tissue barrier represents the main portal for entry of inhaled nanoparticles (NPs) into the systemic circulation. Thus great efforts are currently being made to determine adverse health effects associated with inhalation of NPs. However, to date very little is known about factors that determine the pulmonary translocation of NPs and their subsequent distribution to secondary organs. METHODS: A novel two-step approach to assess the biokinetics of inhaled NPs is presented. In a first step, alveolar epithelial cellular monolayers (CMLs) at the air-liquid interface (ALI) were exposed to aerosolized NPs to determine their translocation kinetics across the epithelial tissue barrier. Then, in a second step, the distribution to secondary organs was predicted with a physiologically based pharmacokinetic (PBPK) model. Monodisperse, spherical, well-characterized, negatively charged gold nanoparticles (AuNP) were used as model NPs. Furthermore, to obtain a comprehensive picture of the translocation kinetics in different species, human (A549) and mouse (MLE-12) alveolar epithelial CMLs were exposed to ionic gold and to various doses (i.e., 25, 50, 100, 150, 200 ng/cm(2)) and sizes (i.e., 2, 7, 18, 46, 80 nm) of AuNP, and incubated post-exposure for different time periods (i.e., 0, 2, 8, 24, 48, 72 h). RESULTS: The translocation kinetics of the AuNP across A549 and MLE-12 CMLs was similar. The translocated fraction was (1) inversely proportional to the particle size, and (2) independent of the applied dose (up to 100 ng/cm(2)). Furthermore, supplementing the A549 CML with two immune cells, i.e., macrophages and dendritic cells, did not significantly change the amount of translocated AuNP. Comparison of the measured translocation kinetics and modeled biodistribution with in vivo data from literature showed that the combination of in vitro and in silico methods can accurately predict the in vivo biokinetics of inhaled/instilled AuNP. CONCLUSION: Our approach to combine in vitro and in silico methods for assessing the pulmonary translocation and biodistribution of NPs has the potential to replace short-term animal studies which aim to assess the pulmonary absorption and biodistribution of NPs, and to serve as a screening tool to identify NPs of special concern.


Subject(s)
Computer Simulation , Epithelial Cells/metabolism , Gold Compounds/pharmacokinetics , Metal Nanoparticles , Models, Biological , Respiratory Mucosa/metabolism , Administration, Inhalation , Aerosols , Animals , Biological Transport , Cell Line, Tumor , Gold Compounds/administration & dosage , Gold Compounds/blood , Humans , Mice , Particle Size , Tissue Distribution
2.
Environ Sci Technol ; 48(10): 5366-78, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24821461

ABSTRACT

The release of pesticides from conventional spray products has been investigated in depth, and suitable analytical techniques detecting the mass of the released substances are available. In contrast, nanoparticle-containing sprays are less studied, although they are perceived as critical for consumers because inhalation exposure can occur to potentially toxic nanoparticles. A few recent studies presented analytical concepts for exposure experiments and generated data for exposure assessment. This study attempts to review and compare the current approaches to characterize nanosprays and to identify challenges for future research. Furthermore, experimental setups used for exposure assessment from conventional sprays are reviewed and compared to setups used for nanoparticle-containing sprays. National and international norms dealing with nanoparticle characterization, spray characterization and exposure are inspected with regard to their usefulness for standardizing exposure assessment. Different approaches in the field of exposure modeling are reviewed and compared. The conclusion is that due to largely varying experimental setups to date exposure values for nanosprays are difficult to compare. All studies are only conducted with a limited set of sprays, and no systematic evaluation of the study conditions is available. A suitable set of experimental setups as well as minimum reporting requirements should be agreed upon to enable the systematic evaluation of consumer sprays in the future. Indispensable features of such experimental setups are developed in this review.


Subject(s)
Aerosols/adverse effects , Inhalation Exposure/analysis , Nanoparticles/adverse effects , Humans , Models, Theoretical , Particle Size , Pesticides/analysis
3.
Environ Sci Technol ; 48(9): 4765-73, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24720846

ABSTRACT

Waste incineration had been identified as an important source of ultrafine air pollutants resulting in elaborated treatment systems for exhaust air. Nowadays, these systems are able to remove almost all ultrafine particles. However, the fate of ultrafine particles caught in the filters has received little attention so far. Based on the use of engineered nano-objects (ENO) and their transfer into the waste stream, it can be expected that not only combustion generated nanoparticles are found in fly ashes but that many ENO finally end up in this matrix. A more detailed characterization of the nanoparticulate fraction of fly ashes is therefore needed. Physical and chemical characterizations were performed for fly ashes from five selected waste incineration plants (WIPs) with different input materials such as municipal waste, wood and sewage sludge. The intrinsic densities of the fly ashes were in the range of 2.7-3.2 g/cm(3). When the fly ash particle became airborne, the effective density depended on the particle size, increasing from 0.7-0.8 g/cm(3) for 100-150 nm to 2 g/cm(3) for 350-500 nm. The fly ash samples were fractionated at 2 µm, yielding fine fractions (<2 µm) and coarse fractions (>2 µm). The size distributions of the fine fractions in the airborne form were further characterized, which allowed calculation of the percentage of the fly ash particles below 100 nm. We found the highest mass-based percentage was about 0.07%; the number percentage in the fine fraction was in the range of 4.8% to 22%. Comparison with modeling results showed that ENO may constitute a considerable part of the fly ash particles below 100 nm. Chemical analyses showed that for the municipal waste samples Ca and Al were present in higher concentrations in the coarse fraction; for the mixed wood and sludge sample the P concentration was higher in the coarse fraction; for most other samples and elements they were enriched in the fine fraction. Electron microscopic images of fly ashes showed a wide range of particle sizes, from nanometer range to micrometer range. Many aggregated particles were observed, demonstrating that ENO, bulk-derived nano-objects and combustion-generated nano-objects can form aggregates in the incineration process.


Subject(s)
Coal Ash/chemistry , Incineration , Particulate Matter/analysis , Waste Management/methods , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Particle Size , Sewage , Solid Waste , Spectrometry, X-Ray Emission , Switzerland , Wood
4.
J Chromatogr A ; 1334: 92-100, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24556173

ABSTRACT

Asymmetric flow field flow fractionation operated in a multidetector approach (A4F-MDA) is a powerful tool to perform size-classified nanoparticle analysis. Recently several publications mentioned insufficient recovery rates and even retention time shifts attributed to unspecific membrane-particle interactions. One hypothesis to explain this phenomenon is based on the surface charge (zeta-potential) of the membrane material and the particle. In this study, we investigated in how far the ζ-potential of A4F membrane and particles would determine the outcome of A4F in terms of feasibility, separation efficiency, retention time, and recovery rate, or whether other factors such as membrane morphology and particle size were equally important. We systematically studied the influence of the ζ-potential on the interactions between the most commonly used A4F membrane materials and two representative types of titanium dioxide nanoparticles (TiO2 NP). Furthermore the effect of different carrier media and additional surfactants on the surface charge of membranes and particles was investigated and the influence of the particle size and the particle concentration on the recovery rate was evaluated. We found that the eligibility of an A4F method can be predicted based on the ζ-potential of the NPs and the A4F membrane. Furthermore knowing the ζ-potential allows to tuning the separation efficiency of an A4F method. On the other hand we observed significant shifts in retention time for different membrane materials that impede the determination of particle size based on the classical A4F theory. These shifts cannot be attributed to the ζ-potential. Also the ζ-potential does not account for varying recovery rates of different particle types, instead the particle size seems to be the limiting factor. Therefore, the proper characterization of a polydisperse sample remains a challenge.


Subject(s)
Fractionation, Field Flow/methods , Metal Nanoparticles/chemistry , Titanium/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...