Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768700

ABSTRACT

Neuraminidase (NA)-based immunity to influenza can be useful for protecting against novel antigenic variants. To develop safe and effective tools to assess NA-based immunity, we generated a baculovirus-based pseudotyped virus, N1-Bac, that expresses the full-length NA of the influenza A/California/07/2009 (H1N1)pdm09 strain. We evaluated the level of NA-inhibiting (NI) antibodies in the paired blood sera of influenza patients by means of an enzyme-linked lectin assay (ELLA) using the influenza virus or N1-Bac. Additionally, we evaluated the level of NA antibodies by means of the enzyme-linked immunosorbent assay (ELISA) with an N1-expressing Sf21 culture. We detected a strong correlation between our results from using the influenza virus and NA-Bac pseudoviruses to detect NI antibodies and a medium-strong correlation between NI antibodies and NA antibodies determined by an N1-cell ELISA, indicating that baculovirus-based platforms can be successfully used to evaluate NI or NA antibodies. Furthermore, animal experiments showed that immunization with N1-Bac protected against infection with a drift variant of the A/H1N1pdm09 influenza virus. Our results demonstrate that recombinant baculovirus can be an effective influenza pseudotype to evaluate influenza serologic immunity and protect against influenza virus infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Humans , Neuraminidase/genetics , Antibodies, Viral , Antibodies, Blocking
2.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36145348

ABSTRACT

Influenza outbreaks caused by A/H7N9 viruses have occurred since 2013. After 2016, A/H7N9 influenza viruses underwent evolutionary changes. In this study, we examined the antigenic properties of influenza neuraminidase (NA) of A/H7N9 viruses as part of a live influenza vaccine (LAIV). It was shown that neuraminidase inhibiting (NI) antibodies obtained after A/Anhui/1/2013(H7N9)-based LAIV vaccination did not inhibit A/Hong Kong/125/2017(H7N9) NA and vice versa. The A/Hong Kong/125/2017(H7N9)-based LAIV elicited higher levels of NI antibodies compared to the A/Anhui/1/2013(H7N9)-based LAIV after two doses. Thelow degree of coincidence of the antibody response to hemagglutinin (HA) and NA after LAIV vaccination allows us to consider an enzyme-linked lectin assay (ELLA) as an additional measure for assessing the immunogenicity of influenza vaccines. In mice, N9-reactive monoclonal antibodies (mABs) for the A/environment/Shanghai/RL01/2013(H7N9) influenza virus partially protected against lung infection from the A/Guangdong/17SF003/2016 IDCDC-RG56N(H7N9) virus, thus showing the cross-protective properties of monoclonal antibodies against the drift variant.

3.
Microorganisms ; 10(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35744668

ABSTRACT

Influenza and S. pneumoniae infections are a significant cause of morbidity and mortality worldwide. Intranasal live influenza vaccine (LAIV) may prevent influenza-related bacterial complications. The objectives of the study are to estimate resistance against early influenza infection and post-influenza pneumococcal pneumonia after LAIV in mice. Mice were administered intranasally the monovalent LAIV A/17/Mallard Netherlands/00/95(H7N3), A/17/South Africa/2013/01(H1N1)pdm09 or trivalent LAIV 2017-2018 years of formulation containing A/17/New York/15/5364(H1N1)pdm09 vaccine strain. LAIV demonstrated early protection against homologous and heterologous infections with A/South Africa/3626/2013 (H1N1) pdm09 influenza virus on day six, following immunization. Following boost immunization, trivalent LAIV demonstrated a pronounced protective effect both in terms of lethality and pneumococcal lung infection when S. pneumoniae infection was performed three days after the onset of influenza infection. Conclusion: LAIV provides early protection against homologous and heterologous viral infections and has a protective effect against post-influenza pneumococcal infection. These data suggest that the intranasal administration of LAIV may be useful during the cycle of circulation not only of influenza viruses, but also of other causative agents of acute respiratory infections.

4.
Virulence ; 13(1): 558-568, 2022 12.
Article in English | MEDLINE | ID: mdl-35266442

ABSTRACT

Severe influenza complications are often caused by Streptococcus pneumoniae infection, which presents the most common cause of community-acquired pneumonia. We evaluated in a mouse model an associated virus-bacterial vaccine based on seasonal live influenza vaccines (LAIV) and S. pneumoniae chimeric protein comprising flagellin (PSPF). Intranasal immunization of mice with a complex of trivalent LAIV and PSPF caused an increased release of early cytokines in the lungs of mice. The immunogenicity of LAIV and PSPF in the associated vaccine composition was sometimes decreased compared to each vaccine preparation alone. Nevertheless, only vaccination of mice with LAIV+PSPF significantly reduced lethality and the bacterial load in the lungs in a model of post-influenza bacterial pneumonia. The study of the interactions of influenza viruses with bacterial peptides is important during the development of associated virus-bacterial vaccines intended for the prevention of severe post-influenza bacterial complications.


Subject(s)
Influenza Vaccines , Influenza, Human , Pneumococcal Infections , Animals , Bacterial Vaccines , Humans , Influenza, Human/complications , Influenza, Human/prevention & control , Mice , Peptides , Pneumococcal Infections/prevention & control , Satellite Viruses , Seasons , Streptococcus pneumoniae , Vaccines, Attenuated
5.
Microorganisms ; 9(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34946050

ABSTRACT

Probiotic microorganisms are currently considered as a promising platform for the development of recombinant vaccines expressing foreign antigens. In this study, we generated and evaluated the live mucosal recombinant vaccine by integrating genes encoding influenza virus neuraminidase (NA) of the N2 subtype into the DNA of the probiotic strain Enterococcus faecium L3 (L3). We confirmed NA expression in the pili of L3 using immune electron microscopy. Mice were fed with a probiotic vaccine containing the NA gene (L3-NA) or pure L3. Oral administration of L3-NA caused detectable increase in virus-specific serum IgG and local IgA after the third feeding. Immunization with L3-NA increased the survival rate by 34% when the mice were infected using A(H1N1)pdm09 influenza virus after the third feeding. After S. pneumoniae post-influenza infection, the L3-NA-immunized mice were 50% more protected from lethality in comparison with L3-fed mice. Thus, a live probiotic vaccine candidate based on L3 induced the formation of systemic and local immunity and provide partial protection against complicated influenza.

6.
Front Immunol ; 12: 689436, 2021.
Article in English | MEDLINE | ID: mdl-34335593

ABSTRACT

We investigated the reaction of mouse peritoneal mast cells (MCs) in vitro after IgG-containing immune complex introduction using A/H5N1 and A/H1N1pdm09 influenza viruses as antigens. The sera of immune mice served as a source of IgG antibodies. The concentration of histamine in the supernatants was determined at 4 hours after incubation with antisera and virus. We compared the contribution of MCs to the pathogenesis of post-immunization influenza infection with A/H5N1 and A/H1N1 influenza viruses in mice. The mice were immunized parenterally with inactivated viruses and challenged with lethal doses of drift A/H5N1 and A/H1N1 influenza viruses on the 14th day after immunization. Simultaneously, half of the mice were injected intraperitoneally with a mixture of histamine receptor blockers (chloropyramine and quamatel). In in vitro experiments, the immune complex formed by A/H5N1 virus and antiserum caused a significant increase in the histamine release compared to immune serum or the virus alone. With regard to the A/H1N1 virus, such an increase was not significant. A/H1N1 immunization caused detectable HI response in mice at 12th day after immunization, in contrast to the A/H5N1 virus. After challenge of A/H5N1-immunized mice, administration of antihistamines increased the survival rate by up to 90%. When infecting the A/H1N1-immunized mice, 90% of the animals were already protected from lethal infection by day 14; the administration of histamine receptor blockers did not increase survival. Histological examination of the lungs has shown that toluidine blue staining allows to estimate the degree of MC degranulation. The possibility of in vitro activation of murine MCs by IgG-containing immune complexes has been shown. In a model of influenza infection, it was shown that the administration of histamine receptor blockers increased survival. When the protection was formed faster due to the earlier production of HI antibodies, the administration of histamine receptor blockers did not significantly affect the course of the infection. These data allow to propose that even if there are antibody-dependent MC reactions, they can be easily stopped by the administration of histamine receptor blockers.


Subject(s)
Antibodies, Viral/blood , Cell Degranulation , Histamine Release , Immunoglobulin G/blood , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Lung/immunology , Mast Cells/immunology , Orthomyxoviridae Infections/immunology , Animals , Cell Degranulation/drug effects , Disease Models, Animal , Female , Histamine Antagonists/pharmacology , Histamine Release/drug effects , Host-Pathogen Interactions , Immunogenicity, Vaccine , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza Vaccines/administration & dosage , Lung/drug effects , Lung/metabolism , Lung/virology , Mast Cells/drug effects , Mast Cells/metabolism , Mast Cells/virology , Mice, Inbred CBA , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Severity of Illness Index , Time Factors , Vaccination
7.
Biomed Res Int ; 2017: 9359276, 2017.
Article in English | MEDLINE | ID: mdl-28210631

ABSTRACT

Since conserved viral proteins of influenza virus, such as nucleoprotein (NP) and matrix 1 protein, are the main targets for virus-specific CD8+ cytotoxic T-lymphocytes (CTLs), we hypothesized that introduction of the NP gene of wild-type virus into the genome of vaccine reassortants could lead to better immunogenicity and afford better protection. This paper describes in vitro and in vivo preclinical studies of two new reassortants of pandemic H1N1 live attenuated influenza vaccine (LAIV) candidates. One had the hemagglutinin (HA) and neuraminidase (NA) genes from A/South Africa/3626/2013 H1N1 wild-type virus on the A/Leningrad/134/17/57 master donor virus backbone (6 : 2 formulation) while the second had the HA, NA, and NP genes of the wild-type virus on the same backbone (5 : 3 formulation). Although both LAIVs induced similar antibody immune responses, the 5 : 3 LAIV provoked greater production of virus-specific CTLs than the 6 : 2 variant. Furthermore, the 5 : 3 LAIV-induced CTLs had higher in vivo cytotoxic activity, compared to 6 : 2 LAIV. Finally, the 5 : 3 LAIV candidate afforded greater protection against infection and severe illness than the 6 : 2 LAIV. Inclusion in LAIV of the NP gene from wild-type influenza virus is a new approach to inducing cross-reactive cell-mediated immune responses and cross protection against pandemic influenza.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/classification , Influenza Vaccines/immunology , Neuraminidase/immunology , Nucleoproteins/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cross Protection , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/therapeutic use , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza Vaccines/genetics , Influenza Vaccines/therapeutic use , Mice , Neuraminidase/genetics , Neuraminidase/therapeutic use , Nucleoproteins/genetics , Nucleoproteins/therapeutic use , Vaccines, Attenuated/immunology , Vaccines, Attenuated/therapeutic use
8.
Hum Vaccin Immunother ; 11(12): 2839-48, 2015.
Article in English | MEDLINE | ID: mdl-26697973

ABSTRACT

During the past decade, a number of H5 subtype influenza vaccines have been developed and tested in clinical trials, but most of them induced poor serum antibody responses prompting the evaluation of novel vaccination approaches. One of the most promising ones is a "prime-boost" strategy, which could result in the induction of prompt and robust immune responses to a booster influenza vaccine following priming with homologous or heterologous vaccine strains. In our study we evaluated immunogenicity of an adjuvanted A(H5N1) inactivated influenza vaccine (IIV) in healthy adult subjects who received A(H5N2) live attenuated influenza vaccine (LAIV) 1.5 years earlier and compared this with a group of naïve subjects. We found that priming with A(H5N2) LAIV induced a long-lasting B-cell immunological memory against influenza A(H5N1) virus, which was brought on by more prompt and vigorous antibody production to a single dose of A(H5N1) IIV in the primed group, compared to the naïve controls. Thus, by day 28 after the first booster dose, the hemagglutination inhibition and neutralizing (MN) antibody titer rises were 17.2 and 30.8 in the primed group, compared to 2.3 and 8.0 in the control group, respectively. The majority (79%) of the primed individuals achieved seroprotective MN antibody titers at 7 days after the first dose of the IIV. All LAIV-primed volunteers had MN titers ≥ 1:40 by Day 28 after one dose of IIV, whereas only 58% subjects from the naïve control group developed similar immune responses at this time point. The second A(H5N1) IIV dose did not increase the immune response in the LAIV-primed group, whereas 2 doses of IIV were required for naïve volunteers to develop significant immune responses. These findings were of special significance since Russian-based LAIV technology has been licensed to WHO, through whom the vaccine has been provided to vaccine manufacturers in India, China and Thailand - countries particularly vulnerable to a pandemic influenza. The results of our study will be useful to inform the development of vaccination strategies in these countries in the event of a pandemic.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N2 Subtype/immunology , Influenza Vaccines/immunology , Vaccines, Attenuated/immunology , Vaccines, Inactivated/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , B-Lymphocytes/immunology , Cross Reactions/immunology , Female , Hemagglutination Inhibition Tests , Humans , Immunization, Secondary , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunologic Memory/immunology , Male , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...