Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Lancet Oncol ; 25(4): 488-500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547893

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma is characterised by low immunogenicity and an immunosuppressive tumour microenvironment. LOAd703, an oncolytic adenovirus with transgenes encoding TMZ-CD40L and 4-1BBL, lyses cancer cells selectively, activates cytotoxic T cells, and induces tumour regression in preclinical models. The aim of this study was to evaluate the safety and feasibility of combining LOAd703 with chemotherapy for advanced pancreatic ductal adenocarcinoma. METHODS: LOKON001 was a non-randomised, phase 1/2 study conducted at the Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA, and consisted of two arms conducted sequentially; the results of arm 1 are presented here. In arm 1, patients 18 years or older with previously treated or treatment-naive unresectable or metastatic pancreatic ductal adenocarcinoma were treated with standard 28-day cycles of intravenous nab-paclitaxel 125 mg/m2 plus gemcitabine 1000 mg/m2 (up to 12 cycles) and intratumoural injections of LOAd703 every 2 weeks. Patients were assigned using Bayesian optimal interval design to receive 500 µL of LOAd703 at 5 × 1010 (dose 1), 1 × 1011 (dose 2), or 5 × 1011 (dose 3) viral particles per injection, injected endoscopically or percutaneously into the pancreatic tumour or a metastasis for six injections. The primary endpoints were safety and treatment-emergent immune response in patients who received at least one dose of LOAd703, and antitumour activity was a secondary endpoint. This study was registered with ClinicalTrials.gov, NCT02705196, arm 2 is ongoing and open to new participants. FINDINGS: Between Dec 2, 2016, and Oct 17, 2019, 23 patients were assessed for eligibility, leading to 22 patients being enrolled. One patient withdrew consent, resulting in 21 patients (13 [62%] men and eight [38%] women) assigned to a dose group (three to dose 1, four to dose 2, and 14 to dose 3). 21 patients were evaluable for safety. Median follow-up time was 6 months (IQR 4-10), and data cutoff was Jan 5, 2023. The most common treatment-emergent adverse events overall were anaemia (96 [8%] of 1237 events), lymphopenia (86 [7%] events), hyperglycaemia (70 [6%] events), leukopenia (63 [5%] events), hypertension (62 [5%] events), and hypoalbuminaemia (61 [5%] events). The most common adverse events attributed to LOAd703 were fever (14 [67%] of 21 patients), fatigue (eight [38%]), chills (seven [33%]), and elevated liver enzymes (alanine aminotransferase in five [24%], alkaline phosphatase in four [19%], and aspartate aminotransferase in four [19%]), all of which were grade 1-2, except for a transient grade 3 aminotransferase elevation occurring at dose 3. A maximum tolerated dose was not reached, thereby establishing dose 3 as the highest-evaluated safe dose when combined with nab-paclitaxel plus gemcitabine. Proportions of CD8+ effector memory cells and adenovirus-specific T cells increased after LOAd703 injections in 15 (94%) of 16 patients for whom T-cell assays could be performed. Eight (44%, 95% CI 25-66) of 18 patients evaluable for activity had an objective response. INTERPRETATION: Combining LOAd703 with nab-paclitaxel plus gemcitabine in patients with advanced pancreatic ductal adenocarcinoma was feasible and safe. To build upon this novel chemoimmunotherapeutic approach, arm 2 of LOKON001, which combines LOAd703, nab-paclitaxel plus gemcitabine, and atezolizumab, is ongoing. FUNDING: Lokon Pharma, the Swedish Cancer Society, and the Swedish Research Council.


Subject(s)
Adenocarcinoma , Anemia , Oncolytic Viruses , Pancreatic Neoplasms , Thrombocytopenia , Male , Humans , Female , Gemcitabine , Oncolytic Viruses/genetics , Bayes Theorem , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/drug therapy , Paclitaxel , Anemia/chemically induced , Thrombocytopenia/chemically induced , Adenocarcinoma/therapy , Adenocarcinoma/drug therapy , Albumins , Genetic Therapy/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Tumor Microenvironment
2.
Hum Gene Ther ; 26(8): 498-505, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26230974

ABSTRACT

Chimeric antigen receptor (CAR) T-cells have shown remarkable results in patients with B-cell leukemia and lymphoma. However, while CAR T-cells have shown complete responses in a majority of patients with acute lymphoblastic leukemia (ALL), lymphomas are more difficult to treat. Different CAR designs and conditioning protocols seem to affect the persistence of patient responses. However, factors that determine if patients receiving the same CARs will respond or not remain obscure. In Sweden, a phase I/IIa trial using third-generation CAR T-cells is ongoing in which we intend to compare tumor biology and immunology, in each patient, to treatment response. CAR T-cell therapy is a powerful tool to add to the treatment options for this patient group but we need to perform the necessary basic research on the multifactorial mechanisms of action to give patients the best possible option of survival. Such studies are also crucial to expand the success of CAR T-cells beyond CD19+ B-cell malignancy. This review will focus on possible barriers of treating lymphoma to define factors that need to be investigated to develop the next generation of CAR T-cell therapy.


Subject(s)
Lymphoma/therapy , T-Lymphocytes/transplantation , Animals , Humans , Immunosuppression Therapy , Immunotherapy , Lymphocytes, Tumor-Infiltrating/immunology , Lymphoma/immunology , Mutant Chimeric Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment
3.
J Neuroimmunol ; 277(1-2): 153-9, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25457841

ABSTRACT

In this cross-sectional study, we wanted to identify key cytokines characteristic of different stages of multiple sclerosis (MS). To this end, cerebrospinal fluid from patients with MS was investigated with a multiplexed fluorescent bead-based immunoassay. In total 43 cytokines were assessed and related to clinical and imaging data. Increased levels of CCL22, CXCL10 and sCD40L characterized relapsing-remitting MS patients with the presence of gadolinium-enhancing lesions; decreased CCL2 and increased CXCL1 and CCL5 were typical of relapsing-remitting MS patients irrespectively of the presence of gadolinium-enhancing lesions. These homogenous patterns of cytokine activation do not conform to conventional Th1/Th2/Th17 responses.


Subject(s)
Cytokines/cerebrospinal fluid , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/pathology , T-Lymphocytes, Helper-Inducer/pathology , Adolescent , Adult , Aged , Cross-Sectional Studies , Female , Humans , Inflammation/etiology , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/complications , Young Adult
4.
Immunology ; 142(3): 431-41, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24588452

ABSTRACT

Treatment with mesenchymal stromal cells (MSCs) is currently of interest for a number of diseases including multiple sclerosis. MSCs are known to target inflamed tissues, but in a therapeutic setting their systemic administration will lead to few cells reaching the brain. We hypothesized that MSCs may target the brain upon intranasal administration and persist in central nervous system (CNS) tissue if expressing a CNS-targeting receptor. To demonstrate proof of concept, MSCs were genetically engineered to express a myelin oligodendrocyte glycoprotein-specific receptor. Engineered MSCs retained their immunosuppressive capacity, infiltrated into the brain upon intranasal cell administration, and were able to significantly reduce disease symptoms of experimental autoimmune encephalomyelitis (EAE). Mice treated with CNS-targeting MSCs were resistant to further EAE induction whereas non-targeted MSCs did not give such persistent effects. Histological analysis revealed increased brain restoration in engineered MSC-treated mice. In conclusion, MSCs can be genetically engineered to target the brain and prolong therapeutic efficacy in an EAE model.


Subject(s)
Central Nervous System/cytology , Encephalomyelitis, Autoimmune, Experimental/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Administration, Intranasal , Animals , Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Genetic Engineering , Humans , Inflammation/pathology , Inflammation/prevention & control , Inflammation/therapy , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/genetics , Myelin-Oligodendrocyte Glycoprotein/metabolism
5.
Immunology ; 140(2): 211-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23721329

ABSTRACT

Autologous haematopoietic stem cell transplantation (HSCT) for relapsing-remitting multiple sclerosis is a potentially curative treatment, which can give rise to long-term disease remission. However, the mode of action is not yet fully understood. The aim of the study was to evaluate similarities and differences of the CD4(+) T-cell populations between HSCT-treated patients (n = 12) and healthy controls (n = 9). Phenotyping of memory T cells, regulatory T (Treg) cells and T helper type 1 (Th1) and type 17 (Th17) cells was performed. Further, T-cell reactivity to a tentative antigen, myelin oligodendrocyte glycoprotein, was investigated in these patient populations. Patients treated with natalizumab (n = 15) were included as a comparative group. White blood cells were analysed with flow cytometry and T-cell culture supernatants were analysed with magnetic bead panel immunoassays. HSCT-treated patients had similar levels of Treg cells and of Th1 and Th17 cells as healthy subjects, whereas natalizumab-treated patients had lower frequencies of Treg cells, and higher frequencies of Th1 and Th17 cells. Cells from HSCT-treated patients cultured with overlapping peptides from myelin oligodendrocyte glycoprotein produced more transforming growth factor-ß1 than natalizumab-treated patients, which suggests a suppressive response. Conversely, T cells from natalizumab-treated patients cultured with those peptides produced more interleukin-17 (IL-17), IL-1 and IL-10, indicating a Th17 response. In conclusion, we demonstrate circumstantial evidence for the removal of autoreactive T-cell clones as well as development of tolerance after HSCT. These results parallel the long-term disease remission seen after HSCT.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/surgery , Adolescent , Adult , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Cell Separation , Female , Flow Cytometry , Humans , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Natalizumab , Young Adult
6.
J Immunother ; 36(6): 350-8, 2013.
Article in English | MEDLINE | ID: mdl-23799414

ABSTRACT

Malignant melanoma is a serious disease in both humans and dogs, and the high metastatic potential results in poor prognosis for many patients. Its similarities with human melanoma make spontaneous canine melanoma an excellent model for comparative studies of novel therapies and tumor biology. We report a pilot study of local adenovector CD40L (AdCD40L) immunogene treatment in 19 cases of canine melanoma (14 oral, 4 cutaneous, and 1 conjunctival). Three patients were World Health Organization stage I, 2 were stage II, 10 stage III, and 4 stage IV. One to 6 intratumoral injections of AdCD40L were given every 7 days, followed by cytoreductive surgery in 9 cases and only immunotherapy in 10 cases. Tumor tissue was infiltrated with T and B lymphocytes after treatment, suggesting immune stimulation. The best overall response included 5 complete responses, 8 partial responses, and 4 stable and 2 progressive disease statuses according to the World Health Organization response criteria. Median survival was 160 days (range, 20-1141 d), with 3 dogs still alive at submission. Our results suggest that local AdCD40L therapy is safe and could have beneficial effects in dogs, supporting further treatment development. Clinical translation to human patients is in progress.


Subject(s)
CD40 Ligand/genetics , Genetic Therapy , Melanoma/genetics , Melanoma/therapy , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD40 Ligand/immunology , Cytokines/immunology , Dogs , Female , Genetic Therapy/adverse effects , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Male , Melanoma/diagnosis , Melanoma/immunology , Melanoma/mortality , Neoplasm Grading , Neoplasm Metastasis , Pilot Projects
7.
PLoS One ; 8(1): e55818, 2013.
Article in English | MEDLINE | ID: mdl-23383287

ABSTRACT

Immunotherapy (eg interferon α) in combination with tyrosine kinase inhibitors is currently in clinical trials for treatment of chronic myeloid leukemia (CML). Cancer patients commonly have problems with so called immune escape mechanisms that may hamper immunotherapy. Hence, to study the function of the immune system in CML is of interest. In the present paper we have identified immune escape mechanisms in CML with focus on those that directly hamper T cells since these cells are important to control tumor progression. CML patient samples were investigated for the presence of myeloid-derived suppressor cells (MDSCs), expression of programmed death receptor ligand 1/programmed death receptor 1 (PD-L1/PD-1), arginase 1 and soluble CD25. MDSC levels were increased in samples from Sokal high risk patients (p<0.05) and the cells were present on both CD34 negative and CD34 positive cell populations. Furthermore, expression of the MDSC-associated molecule arginase 1, known to inhibit T cells, was increased in the patients (p = 0.0079). Myeloid cells upregulated PD-L1 (p<0.05) and the receptor PD-1 was present on T cells. However, PD-L1 blockade did not increase T cell proliferation but upregulated IL-2 secretion. Finally, soluble CD25 was increased in high risk patients (p<0.0001). In conclusion T cells in CML patients may be under the control of different immune escape mechanisms that could hamper the use of immunotherapy in these patients. These escape mechanisms should be monitored in trials to understand their importance and how to overcome the immune suppression.


Subject(s)
B7-H1 Antigen/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Programmed Cell Death 1 Receptor/metabolism , Adolescent , Adult , Aged , Antigens, CD34/metabolism , Arginase/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Leukemic , Humans , Interleukin-2 Receptor alpha Subunit/blood , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Lymphocyte Activation/immunology , Male , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Young Adult
8.
Int Rev Immunol ; 31(4): 289-98, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22804573

ABSTRACT

CD40-mediated cancer therapy has been under development since it became clear that CD40 plays a profound role in the stimulation of adaptive immune responses. Further, CD40 signaling on tumor cells may lead to growth arrest or even apoptosis that improves therapy outcome. The therapeutic window is appealing since the immune system is selective and normal cells do not apoptose upon CD40 signaling. AdCD40L is an adenoviral-based immunostimulatory gene therapy under evaluation for its efficacy to treat cancer. Because of its nature, the adenoviral backbone will stimulate TLRs while CD40L potentiates the shifts toward Th1 type of immunity. AdCD40L has shown efficacy in various murine models, and safety studies have been performed on dog patients and in human clinical trials. AdCD40L has been used for both ex vivo gene modification of tumor cell vaccines as well as for direct intratumoral injections. Lately, an oncolytic vector has been used to further increase the eradication of solid tumors that as a consequence further boosts the release of tumor antigens and creates danger signaling in the tumor micro milieu. This review discusses the currently unfolding mechanisms of action of AdCD40L gene therapy and its possibilities to reach clinical care.


Subject(s)
CD40 Ligand/genetics , Cancer Vaccines/therapeutic use , Genetic Therapy/methods , Neoplasms/therapy , Oncolytic Virotherapy , Adenoviridae , Animals , Clinical Trials as Topic , Disease Models, Animal , Dogs , Genetic Vectors/genetics , Humans , Immunization , Mice , Th1-Th2 Balance
9.
J Neuroinflammation ; 9: 112, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22647574

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). In the murine experimental autoimmune encephalomyelitis (EAE) model of MS, T regulatory (Treg) cell therapy has proved to be beneficial, but generation of stable CNS-targeting Tregs needs further development. Here, we propose gene engineering to achieve CNS-targeting Tregs from naïve CD4 cells and demonstrate their efficacy in the EAE model. METHODS: CD4+ T cells were modified utilizing a lentiviral vector system to express a chimeric antigen receptor (CAR) targeting myelin oligodendrocyte glycoprotein (MOG) in trans with the murine FoxP3 gene that drives Treg differentiation. The cells were evaluated in vitro for suppressive capacity and in C57BL/6 mice to treat EAE. Cells were administered by intranasal (i.n.) cell delivery. RESULTS: The engineered Tregs demonstrated suppressive capacity in vitro and could efficiently access various regions in the brain via i.n cell delivery. Clinical score 3 EAE mice were treated and the engineered Tregs suppressed ongoing encephalomyelitis as demonstrated by reduced disease symptoms as well as decreased IL-12 and IFNgamma mRNAs in brain tissue. Immunohistochemical markers for myelination (MBP) and reactive astrogliosis (GFAP) confirmed recovery in mice treated with engineered Tregs compared to controls. Symptom-free mice were rechallenged with a second EAE-inducing inoculum but remained healthy, demonstrating the sustained effect of engineered Tregs. CONCLUSION: CNS-targeting Tregs delivered i.n. localized to the CNS and efficiently suppressed ongoing inflammation leading to diminished disease symptoms.


Subject(s)
Cell Engineering/methods , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Forkhead Transcription Factors/administration & dosage , Genetic Therapy/methods , Receptors, Antigen, T-Cell/administration & dosage , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Administration, Intranasal , Animals , Cell Line , Central Nervous System/immunology , Central Nervous System/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Forkhead Transcription Factors/genetics , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Lentivirus/genetics , Lentivirus/immunology , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes, Regulatory/transplantation
10.
Cancer Res ; 72(9): 2327-38, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22396493

ABSTRACT

Oncolytic adenovirus is an attractive platform for immunotherapy because virus replication is highly immunogenic and not subject to tolerance. Although oncolysis releases tumor epitopes and provides costimulatory danger signals, arming the virus with immunostimulatory molecules can further improve efficacy. CD40 ligand (CD40L, CD154) induces apoptosis of tumor cells and triggers several immune mechanisms, including a T-helper type 1 (T(H)1) response, which leads to activation of cytotoxic T cells and reduction of immunosuppression. In this study, we constructed a novel oncolytic adenovirus, Ad5/3-hTERT-E1A-hCD40L, which features a chimeric Ad5/3 capsid for enhanced tumor transduction, a human telomerase reverse transcriptase (hTERT) promoter for tumor selectivity, and human CD40L for increased efficacy. Ad5/3-hTERT-E1A-hCD40L significantly inhibited tumor growth in vivo via oncolytic and apoptotic effects, and (Ad5/3-hTERT-E1A-hCD40L)-mediated oncolysis resulted in enhanced calreticulin exposure and HMGB1 and ATP release, which were suggestive of immunogenicity. In two syngeneic mouse models, murine CD40L induced recruitment and activation of antigen-presenting cells, leading to increased interleukin-12 production in splenocytes. This effect was associated with induction of the T(H)1 cytokines IFN-γ, RANTES, and TNF-α. Tumors treated with Ad5/3-CMV-mCD40L also displayed an enhanced presence of macrophages and cytotoxic CD8(+) T cells but not B cells. Together, our findings show that adenoviruses coding for CD40L mediate multiple antitumor effects including oncolysis, apoptosis, induction of T-cell responses, and upregulation of T(H)1 cytokines.


Subject(s)
CD40 Ligand/genetics , CD40 Ligand/immunology , Neoplasms/immunology , Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Animals , Apoptosis/immunology , Cell Line, Tumor , Cytokines/immunology , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Melanoma, Experimental/virology , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasms/genetics , Neoplasms/virology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/virology , Xenograft Model Antitumor Assays
11.
Immunology ; 135(4): 255-60, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22112044

ABSTRACT

It is well established that T regulatory (Treg) cells counteract tumour immunity. However, conflicting results describing the role of Treg cells in haematological tumours warrant further investigations to clarify the interactions between Treg cells and the tumour. B-cell malignancy derives from different stages of B-cell development and differentiation in which T cells play a profound role. The transformed B cell may still be in need of T-cell help to thrive but simultaneously they may be recognized and destroyed by cytotoxic lymphocytes. Recent reports demonstrate that Treg cells can suppress and even kill B cells as part of their normal function to rescue the body from autoimmunity. An emerging body of evidence points out that Treg cells not only inhibit tumour-specific T cells but may also have a role in suppressing the progression of the B-cell tumour. In this review, we discuss the origin and function of Treg cells and their role in patients with B-cell tumours.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/pathology , Leukemia, B-Cell/immunology , Lymphoma, B-Cell/immunology , T-Lymphocytes, Regulatory/immunology , B-Lymphocytes/cytology , Cell Differentiation , Humans , Leukemia, B-Cell/pathology , Lymphocyte Activation , Lymphoma, B-Cell/pathology , T-Lymphocytes, Regulatory/cytology
12.
Immunology ; 133(3): 296-306, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21463298

ABSTRACT

Cytotoxic CD4(+) T cells have been found in patients with chronic lymphocytic leukaemia (CLL) and seem to be involved in the regulation of malignant B cells. The CD4(+) T regulatory cells (Tregs) can regulate various immune cells, including B cells, by inducing their apoptosis. Hence, different subgroups of CD4(+) T cells may be involved in the regulation of malignant B cells. In this study, the cytotoxic phenotype and function of various CD4(+) T-cell subgroups were investigated in patients with B-cell malignancies. Peripheral blood was collected from patients with CLL, various B-cell lymphomas, healthy adult donors, children with precursor B-cell acute lymphoblastic leukaemia (pre-B ALL) and from healthy children. CD4(+) T cells (CD3(+) CD4(+) FoxP3(-)), Tregs (CD3(+) CD4(+) CD127(low) FoxP3(+)) and CD127(high) FoxP3(+) T cells (CD3(+) CD4(+) CD127(high) FoxP3(+)) were analysed for their expression of the cytolytic markers CD107a and Fas ligand. Patients with CLL had increased CD107a expression on all tested T-cell subgroups compared with healthy donors. Similar results were found in patients with B-cell lymphomas whereas the CD107a expression in children with pre-B ALL was no different from that in healthy controls. Fas ligand expression was similar between patient cells and cells of healthy donors. CD4(+) T cells and Tregs from patients with CLL and healthy donors were subsequently purified and cultured in vitro with autologous B cells. Both subgroups lysed B cells and killing was confirmed by granzyme ELISAs. In conclusion, cytotoxic populations of CD4(+) T cells, including Tregs, are present in patients with B-cell malignancy and may be an important factor in immune-related disease control.


Subject(s)
B-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Forkhead Transcription Factors/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Cell Death , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , T-Lymphocytes, Regulatory/physiology
13.
Immunology ; 131(3): 371-6, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20518821

ABSTRACT

Interleukin-2 (IL-2) is one of the most studied cytokines driving T-cell proliferation, activation and survival. It binds to the IL-2 receptor consisting of three chains, the α (CD25), ß and common γ (γc). The binding of the CD25 chain to IL-2 is necessary to expose high-affinity binding sites for the ß and γc chains, which, in turn, are responsible for downstream signalling. A high level of soluble CD25 (sCD25) has been associated with a poor prognosis in patients with non-Hodgkin's lymphoma. The function and source of origin of this soluble receptor is not well investigated. In the present study we hypothesized that T regulatory (Treg) cells may release CD25 to act as a decoy receptor for IL-2, thereby depriving T-effector cells of IL-2. Peripheral blood from patients with B-cell malignancies (n = 26) and healthy controls (n = 27) was investigated for the presence and function of FoxP3(+) Treg cells and sCD25 by multi-colour flow cytometry and enzyme-linked immunosorbent assay. Further, the proliferative capacity of T cells was evaluated with or without the presence of recombinant sCD25. The results demonstrate that Treg cells from patients had lower CD25 expression intensity and that they released CD25 in vitro. Further, high levels of Treg cells correlated with sCD25 plasma concentration. Recombinant sCD25 could suppress T-cell proliferation in vitro. In conclusion, the release of sCD25 by Treg cells may be a mechanism to deprive IL-2 and thereby inhibit anti-tumour T-cell responses.


Subject(s)
Interleukin-2 Receptor alpha Subunit/metabolism , Lymphoma, B-Cell/immunology , Recombinant Proteins/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism , Cell Proliferation/drug effects , Cell Separation , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Forkhead Transcription Factors/biosynthesis , Humans , Interleukin-2 Receptor alpha Subunit/blood , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Lymphoma, B-Cell/blood , Lymphoma, B-Cell/pathology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Tumor Escape/drug effects , Tumor Escape/immunology
14.
Clin Cancer Res ; 16(12): 3279-87, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20448220

ABSTRACT

PURPOSE: Immunotherapy with Bacillus Calmette-Guerin (BCG) instillation is recommended for high-risk, non-muscle invasive bladder cancer. Bacillus Calmette-Guerin is not effective in advanced tumors, and better alternatives are warranted. Immunostimulating gene therapy with adenoviral vectors expressing CD40 ligand (AdCD40L) has shown efficacy in tumor models. CD40 ligand stimulates systemic immunity and may be effective in local and invasive human disease. EXPERIMENTAL DESIGN: Patients with invasive bladder cancer scheduled for cystectomy or patients with T(a) tumors were enrolled in a phase I/IIa trial. Patients were treated with three cycles of intrabladder Clorpactin WCS-90 prewash, followed by AdCD40L instillation 1 week apart. Safety, gene transfer, immune effects, and antitumor responses were monitored. RESULTS: All eight recruited patients were treated as scheduled, and therapy was well tolerated. The main adverse effect was transient local pain during prewash. Postoperatively, urinary tract infections and one case of late septicemia with elevated potassium were reported. No adverse events were ascribed to vector therapy. Gene transfer was detected in biopsies, and bladders were heavily infiltrated with T cells. The effector marker IFN-gamma increased in biopsies, whereas levels of circulating T regulatory cells were reduced. Histologic evaluation indicated that AdCD40L therapy reduced the load of malignant cells. CONCLUSIONS: To our knowledge, this is the first report on immunogene therapy in bladder cancer and the first using AdCD40L in vivo. Local AdCD40L gene therapy was safe, boosted immune activation, and should be further evaluated as a single or an adjuvant therapy for urothelial malignancies.


Subject(s)
CD40 Ligand/genetics , Genetic Therapy , Urinary Bladder Neoplasms/therapy , Adenoviridae/genetics , Aged , Aged, 80 and over , Benzenesulfonates/administration & dosage , CD40 Ligand/immunology , Female , Gene Transfer Techniques , Genetic Vectors , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged
15.
Semin Immunol ; 21(5): 301-7, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19647448

ABSTRACT

CD40 is a TNF receptor family member that is widely recognized for its prominent role in immune regulation and homeostasis. Expression of CD40 is not restricted to normal lymphoid cells but is also evident in the majority of haemopoietic and epithelial malignancies where it has been implicated in oncogenic events. Accumulating evidence, however, suggests that the CD40 pathway can be exploited for cancer therapy by virtue of its ability to stimulate the host anti-tumor immune response, normalize the tumor microenvironment and directly suppress the growth of CD40-positive tumors. Here, we provide an overview of the multifaceted functions of the CD40 pathway in cancer and its emerging role in the treatment of malignancy.


Subject(s)
CD40 Antigens/immunology , Neoplasms/immunology , Animals , Humans
16.
Immunology ; 126(1): 92-101, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18624727

ABSTRACT

Relapsing-remitting multiple sclerosis (RRMS) is a complex autoimmune disease of the central nervous system with oscillating phases of relapse and remission. RRMS has been considered to be driven by T helper type 1 (Th1) lymphocytes but new data indicate the involvement of Th17 responses. In the present study, blood samples from patients (n=48) and healthy individuals (n=44) were evaluated for their immunological status. T cells from patients with RRMS expressed high levels of the activation marker CD28 (P<0.05) and secreted both interferon-gamma (CD8: P<0.05) and interleukin-17 upon polyclonal mitogen or myelin oligodendrocyte glycoprotein antigen stimulation. However, T cells from patients with RRMS in remission, in contrast to relapse, had poor proliferative capacity (P<0.05) suggesting that they are controlled and kept in anergy. This anergy could be broken with CD28 stimulation that restored the T-cell replication. Furthermore, the patients with RRMS had normal levels of CD4(+) Foxp3(+) T regulatory cells but the frequency of Foxp3(+) cells lacking CD127 (interleukin-7 receptor) was lower in patients with MS (mean 12%) compared to healthy controls (mean 29%). Still, regulatory cells (CD25(+) sorted cells) from patients with RRMS displayed no difference in suppressive capacity. In conclusion, patients in relapse/remission demonstrate in vitro T-cell responses that are both Th1 and Th17 that, while in remission, appear to be controlled by tolerogenic mechanisms yet to be investigated.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Clonal Anergy/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , T-Lymphocyte Subsets/immunology , Adolescent , Adult , Cell Proliferation , Cells, Cultured , Female , Humans , Interferon-gamma/biosynthesis , Interleukin-17/biosynthesis , Interleukin-7 Receptor alpha Subunit/analysis , Lymphocyte Activation/immunology , Male , Middle Aged , Myelin Proteins , Myelin-Associated Glycoprotein/immunology , Myelin-Oligodendrocyte Glycoprotein , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology
17.
Clin Cancer Res ; 11(24 Pt 1): 8816-21, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16361570

ABSTRACT

PURPOSE: The aim of this study was to develop an immunostimulating gene therapy for the treatment of orthotopic bladder carcinoma by transferring the gene for CD40L into the tumor site. CD40L stimulation of dendritic cells induces interleukin-12 expression that drives Th1 type of immune responses with activation of cytotoxic T cells. EXPERIMENTAL DESIGN: The gene for murine CD40L was transferred into bladders of tumor-bearing mice using an adenoviral vector construct. To facilitate viral uptake, the bladders were pretreated with Clorpactin. Survival of mice as well as transgene expression and immunologic effect, such as resistance to tumor challenge and presence of T regulatory cells, were monitored. RESULTS: On viral vector instillation, CD40L expression could be detected by reverse transcription-PCR. As a sign of transgene function, interleukin-12 (IL-12) expression was significantly increased. AdCD40L gene therapy cured 60% of mice with preestablished tumors. The cured mice were completely resistant to subcutaneous challenge with MB49 tumor cells, whereas the growth of a syngeneic irrelevant tumor was unaltered. Furthermore, the mRNA expression level of the T regulatory cell transcription factor Foxp3 was evaluated both in tumor biopsies and lymph nodes. There were no differences within the tumors of the different treatment groups. However, Foxp3 mRNA levels were down-regulated in the lymph nodes of AdCD40L-treated mice. Correspondingly, T cells from AdCD40L-treated mice were not able to inhibit proliferation of naive T cells as opposed to T cells from control-treated, tumor-bearing mice. CONCLUSIONS: AdCD40L gene therapy evokes Th1 cytokine responses and counteracts T regulatory cell development and/or function.


Subject(s)
CD40 Ligand/genetics , Carcinoma/therapy , Genetic Therapy , T-Lymphocytes, Regulatory/immunology , Urinary Bladder Neoplasms/therapy , Adenoviridae/genetics , Animals , Carcinoma/immunology , Disease Models, Animal , Epithelium/pathology , Forkhead Transcription Factors/genetics , Genetic Vectors/genetics , Interleukin-12/genetics , Lymph Nodes/chemistry , Mice , RNA, Messenger/analysis , RNA, Messenger/metabolism , T-Lymphocytes, Regulatory/metabolism , Transduction, Genetic , Urinary Bladder/pathology , Urinary Bladder Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...