Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 93(1): 57-70, 2024 01.
Article in English | MEDLINE | ID: mdl-37975479

ABSTRACT

The island species-area relationship (ISAR) describes how species richness increases with increasing area of a given island or island-like habitat, such as freshwater lakes. While the ISAR is one of the most common phenomena observed in ecology, there is variation in both the form of the relationship and its underlying mechanisms. We compiled a global data set of benthic macroinvertebrates from 524 shallow freshwater lakes, ranging from 1 to 293,300 ha in area. We used individual-based rarefaction to determine the degree to which ISAR was influenced by mechanisms other than passive sampling (larger islands passively sample more individuals from the regional pool and, therefore, have more species than smaller islands), which would bias results away from expected relationships between rarefied species richness (and other measures that capture relative abundances) and lake area. We also examined how climate may alter the shape of the ISARs. We found that both rarefied species richness (the number of species standardized by area or number of individuals) and a measure of evenness emphasizing common species exhibit shallow slopes in relationships with lake area, suggesting that the expected ISARs in these lakes most likely result from passive sampling. While there was considerable variation among ISARs across the investigated lakes, we found an overall positive rarefied ISAR for lakes in warm (i.e. tropical/subtropical) regions (n = 195), and in contrast, an overall negative rarefied ISAR in cool (i.e. north temperate) lakes (n = 329). This suggested that mechanisms beyond passive sampling (e.g. colonization-extinction dynamics and/or heterogeneity) were more likely to operate in warm lakes. One possible reason for this difference is that the area-dependent intensity of fish predation, which can lead to flatter ISARs, is weaker in warmer relative to cooler lakes. Our study illustrates the importance of understanding both the pattern and potential processes underlying the ISARs of freshwater lakes in different climatic regions. Furthermore, it provides a baseline for understanding how further changes to the ecosystem (i.e. in lake area or climate) might influence biodiversity patterns.


Subject(s)
Biodiversity , Ecosystem , Animals , Lakes , Fishes , Ecology
2.
Sci Total Environ ; 820: 153052, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35063522

ABSTRACT

Climate change is rapidly driving global biodiversity declines. How wetland macroinvertebrate assemblages are responding is unclear, a concern given their vital function in these ecosystems. Using a data set from 769 minimally impacted depressional wetlands across the globe (467 temporary and 302 permanent), we evaluated how temperature and precipitation (average, range, variability) affects the richness and beta diversity of 144 macroinvertebrate families. To test the effects of climatic predictors on macroinvertebrate diversity, we fitted generalized additive mixed-effects models (GAMM) for family richness and generalized dissimilarity models (GDMs) for total beta diversity. We found non-linear relationships between family richness, beta diversity, and climate. Maximum temperature was the main climatic driver of wetland macroinvertebrate richness and beta diversity, but precipitation seasonality was also important. Assemblage responses to climatic variables also depended on wetland water permanency. Permanent wetlands from warmer regions had higher family richness than temporary wetlands. Interestingly, wetlands in cooler and dry-warm regions had the lowest taxonomic richness, but both kinds of wetlands supported unique assemblages. Our study suggests that climate change will have multiple effects on wetlands and their macroinvertebrate diversity, mostly via increases in maximum temperature, but also through changes in patterns of precipitation. The most vulnerable wetlands to climate change are likely those located in warm-dry regions, where entire macroinvertebrate assemblages would be extirpated. Montane and high-latitude wetlands (i.e., cooler regions) are also vulnerable to climate change, but we do not expect entire extirpations at the family level.


Subject(s)
Biodiversity , Invertebrates , Wetlands , Animals , Climate Change
3.
Biodivers Data J ; 9: e73763, 2021.
Article in English | MEDLINE | ID: mdl-34754267

ABSTRACT

BACKGROUND: The purpose of the data paper was to introduce into scientific literature the results of scientific work carried out for the third edition of the 'Red Data Book of the Komi Republic'. The article reflects methodological approaches to the formation of a list of rare and in need of protection species and describes the corresponding datasets published in GBIF. NEW INFORMATION: Information about 7,187 occurrences of 438 rare species and infraspecies included in the third edition of the 'Red Data Book of the Komi Republic' have been published.

4.
Biodivers Data J ; 9: e75362, 2021.
Article in English | MEDLINE | ID: mdl-34840508

ABSTRACT

BACKGROUND: Invertebrates are important elements of aquatic ecosystems and play a crucial role in the transformation of matter and energy in continental water bodies. Communities of aquatic invertebrates are characterised by high sensitivity to pollution by nutrients and toxic substances and acidification of water bodies; they serve as good bioindicators of the quality of the aquatic environment and impacts on hydroecosystems. All hydrobionts participate in the processes of self-purification of water bodies.The presented dataset provides information on the aquatic invertebrate community of a large northern river. During 2018-2020, we collected data on changes in the quantitative indicators of the development of benthic and planktonic communities, as well as the species diversity of their fauna. The dataset combines information about the occurrence and abundance of benthic and planktonic invertebrates and summarises data of aquatic invertebrate species found in the Vychegda River in the zone of influence from the pulp and paper mill. NEW INFORMATION: The presented dataset is part of a monitoring programme of the river ecosystems in the production area of Mondi Syktyvkar JSC (the European North-East of Russia, Komi Republic). The dataset describes the structure of benthic invertebrate and plankton communities in the Northern Dvina River Basin. The data on the finding and abundance of large taxa of aquatic invertebrates and species of some groups: Oligochaeta, Cladocera, Copepoda, Rotifera, Ephemeroptera, Plecoptera and Trichoptera are presented. In total, the resource includes 8720 findings of invertebrates, of which 6041 are for zoobenthos organisms and 2679 for zooplankton organisms.

5.
Zookeys ; 910: 43-78, 2020.
Article in English | MEDLINE | ID: mdl-32099515

ABSTRACT

One of the features of the tundra zone is the diversity of freshwater bodies, where, among benthic invertebrates, representatives of Annelida are the most significant component in terms of ecological and species diversity. The oligochaete and leech faunas have previously been studied in two of the three largest lake ecosystems of the Bolshezemelskaya tundra (the Vashutkiny Lakes system, Lake Ambarty and some other lakes in the Korotaikha River basin). This article provides current data on annelid fauna from the third lake ecosystem in the region, Kharbey Lakes and adjacent water bodies. The annelid fauna includes 68 species, including 51 oligochaete species, and 17 species of leeches. For each species, we give information on currently recognised classification, taxonomic synonymy, geographical distribution, findings of the species within the Russian tundra, and brief ecological characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...