Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(7): 4508-4520, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38320122

ABSTRACT

Electroreduction of CO2 into liquid fuels is a compelling strategy for storing intermittent renewable energy. Here, we introduce a family of facet-defined dilute copper alloy nanocrystals as catalysts to improve the electrosynthesis of n-propanol from CO2 and H2O. We show that substituting a dilute amount of weak-CO-binding metals into the Cu(100) surface improves CO2-to-n-propanol activity and selectivity by modifying the electronic structure of catalysts to facilitate C1-C2 coupling while preserving the (100)-like 4-fold Cu ensembles which favor C1-C1 coupling. With the Au0.02Cu0.98 champion catalyst, we achieve an n-propanol Faradaic efficiency of 18.2 ± 0.3% at a low potential of -0.41 V versus the reversible hydrogen electrode and a peak production rate of 16.6 mA·cm-2. This study demonstrates that shape-controlled dilute-metal-alloy nanocrystals represent a new frontier in electrocatalyst design, and precise control of the host and minority metal distributions is crucial for elucidating structure-composition-property relationships and attaining superior catalytic performance.

2.
J Inorg Biochem ; 242: 112162, 2023 05.
Article in English | MEDLINE | ID: mdl-36841008

ABSTRACT

The prototypical drug carrier [CoII(L1)Cl]PF6 (1), where L1 is a tripodal amine bound to pyridine and methyl-imidazoles, had its electrocatalytic water splitting activity studied under different pH conditions. This species contains a high-spin 3d7 CoII metal center, and is capable of generating both H2 from water reduction and O2 from water oxidation. Turnover numbers reach 390 after 3 h for water reduction. Initial water oxidation activity is molecular, with TONs of 71 at pH 7 and 103 at pH 11.5. The results reveal that species 1 can undergo several redox transformations, including reduction to the 3d8 CoI species that precedes a LS3d6 hydride for water reduction, as well as nominal CoIVO and CoIII-OOH species required for water oxidation. Post-catalytic analyses confirm the molecular nature of reduction and support initial molecular activity for oxidation.


Subject(s)
Cobalt , Water , Water/chemistry , Cobalt/chemistry , Oxidation-Reduction , Imidazoles , Pyridines
3.
J Am Chem Soc ; 144(39): 17824-17831, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36154168

ABSTRACT

We report an iron-based graphite-conjugated electrocatalyst (GCC-FeDIM) that combines the well-defined nature of homogeneous molecular electrocatalysts with the robustness of a heterogeneous electrode. A suite of spectroscopic methods, supported by the results of DFT calculations, reveals that the electrode surface is functionalized by high spin (S = 5/2) Fe(III) ions in an FeN4Cl2 coordination environment. The chloride ions are hydrolyzed in aqueous solution, with the resulting cyclic voltammogram revealing a Gaussian-shaped wave assigned to 1H+/1e- reduction of surface Fe(III)-OH surface. A catalytic wave is observed in the presence of NO3-, with an onset potential of -1.1 V vs SCE. At pH 6.0, GCC-FeDIM rapidly reduces NO3- to ammonium and nitrite with 88 and 6% Faradaic efficiency, respectively. Mechanistic studies, including in situ X-ray absorption spectroscopy, suggest that electrocatalytic NO3- reduction involves an iron nitrosyl intermediate. The Fe-N bond length (1.65 Å) is similar to that observed in {Fe(NO)}6 complexes, which is supported by the results of DFT calculations.


Subject(s)
Ammonium Compounds , Graphite , Chlorides , Ferric Compounds/chemistry , Iron/chemistry , Models, Molecular , Nitrates , Nitrites , Nitrogen Oxides
4.
J Am Chem Soc ; 143(18): 7203-7208, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33939918

ABSTRACT

This work reports on the generation of a graphite-conjugated diimine macrocyclic Co catalyst (GCC-CoDIM) that is assembled at o-quinone edge defects on graphitic carbon electrodes. X-ray photoelectron spectroscopy and X-ray absorption spectroscopy confirm the existence of a new Co surface species with a coordination environment that is the same as that of the molecular analogue, [Co(DIM)Br2]+. GCC-CoDIM selectively reduces nitrite to ammonium with quantitative Faradaic efficiency and at a rate that approaches enzymatic catalysis. Preliminary mechanistic investigations suggest that the increased rate is accompanied by a change in mechanism from the molecular analogue. These results provide a template for creating macrocycle-based electrocatalysts based on first-row transition metals conjugated to an extreme redox-active ligand.

5.
Science ; 370(6514): 356-359, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33060362

ABSTRACT

High-valent iron species are key intermediates in oxidative biological processes, but hexavalent complexes apart from the ferrate ion are exceedingly rare. Here, we report the synthesis and structural and spectroscopic characterization of a stable Fe(VI) complex (3) prepared by facile one-electron oxidation of an Fe(V) bis(imido) (2). Single-crystal x-ray diffraction of 2 and 3 revealed four-coordinate Fe centers with an unusual "seesaw" geometry. 57Fe Mössbauer, x-ray photoelectron, x-ray absorption, and electron-nuclear double resonance (ENDOR) spectroscopies, supported by electronic structure calculations, support a low-spin (S = 1/2) d3 Fe(V) configuration in 2 and a diamagnetic (S = 0) d2 Fe(VI) configuration in 3 Their shared seesaw geometry is electronically dictated by a balance of Fe-imido σ- and π-bonding interactions.

6.
Nano Lett ; 20(4): 2821-2828, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32105491

ABSTRACT

A central theme of nanocrystal (NC) research involves synthesis of dimension-controlled NCs and studyof size-dependent scaling laws governing their optical, electrical, magnetic, and thermodynamic properties. Here, we describe the synthesis of monodisperse CdO NCs that exhibit high quality-factor (up to 5.5) mid-infrared (MIR) localized surface plasmon resonances (LSPR) and elucidate the inverse scaling relationship between carrier concentration and NC size. The LSPR wavelength is readily tunable between 2.4 and ∼6.0 µm by controlling the size of CdO NCs. Structural and spectroscopic characterization provide strong evidence that free electrons primarily originate from self-doping due to NC surface-induced nonstoichiometry. The ability to probe and to control NC stoichiometry and intrinsic defects will pave the way toward predictive synthesis of doped NCs with desirable LSPR characteristics.

7.
J Am Chem Soc ; 141(43): 17092-17097, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31601108

ABSTRACT

The paramagnetic cyano-bridged complex PhB(tBuIm)3Fe-NC-Mo(NtBuAr)3 (Ar = 3,5-Me2C6H3) is readily assembled from a new four-coordinate, high-spin (S = 2) iron(II) monocyanide complex and the three-coordinate molybdenum(III) complex Mo(NtBuAr)3. X-ray diffraction and IR spectroscopy reveal that delocalization of unpaired electron density into the cyanide π* orbitals leads to a reduction of the C-N bond order. Direct current (dc) magnetic susceptibility measurements, supported by electronic structure calculations, demonstrate the presence of strong antiferromagnetic exchange between spin centers, with a coupling constant of J = -122(2) cm-1. To our knowledge, this value represents the strongest magnetic exchange coupling ever to be observed through cyanide. These results demonstrate the ability of low-coordinate metal fragments to engender extremely strong magnetic exchange coupling through cyanide by virtue of significant π-backbonding into the cyanide ligand.

8.
Inorg Chem ; 58(18): 12025-12039, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31479262

ABSTRACT

A series of crystalline nickel(II) complexes (1-3) based on inexpensive bis(thiosemicarbazone) ligands diacetylbis(4-methyl-3-thiosemicarbazone) (H2ATSM), diacetylbis(4,4-dimethyl-3-thiosemicarbazone) (H2ATSDM), and diacetylbis[4-(2,2,2-trifluoroethyl)-3-thiosemicarbazone] (H2ATSM-F6) were synthesized and characterized by single-crystal X-ray diffraction and NMR, UV-visible, and Fourier transform infrared spectroscopies. Modified electrodes GC-1-GC-3 were prepared with films of 1-3 deposited on glassy carbon and evaluated as potential hydrogen evolution reaction (HER) catalysts. HER studies in 0.5 M aqueous H2SO4 (10 mA cm-2) revealed dramatic shifts in the overpotential from 0.740 to 0.450 V after extended cycling for 1 and 2. The charge-transfer resistances for GC-1-GC-3 were determined to be 270, 160, and 630 Ω, respectively. Characterization of the modified surfaces for GC-1 and GC-2 by scanning electron microscopy and Raman spectroscopy revealed similar crystalline coatings before HER that changed to surface-modified crystallites after conditioning. The surface of GC-3 had an initial glasslike appearance before HER that delaminated after HER. The differences in the surface morphology and the effect of conditioning are correlated with crystal-packing effects. Complexes 1 and 2 pack as columns of interacting complexes in the crystallographic a direction with short interplanar spacings between 3.37 and 3.54 Å. Complex 3 packs as columns of isolated molecules in the crystallographic b direction with long-range interplanar spacings of 9.40 Å.

9.
Inorg Chem ; 58(19): 12986-12997, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31503487

ABSTRACT

The zinc(II) complex of diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-hydrazonepyridine), ZnL1 (1), was prepared and evaluated as a precatalyst for the hydrogen evolution reaction (HER) under homogeneous conditions in acetonitrile. Complex 1 is protonated on the noncoordinating nitrogen of the hydrazonepyridine moiety to yield the active catalyst Zn(HL1)OAc (2) upon addition of acetic acid. Addition of methyl iodide to 1 yields the corresponding methylated derivative ZnL2I (3). In solution, partial dissociation of the coordinated iodide yields the cationic derivative 3'. Complexes 1-3 were characterized by 1H NMR, FT-IR, and UV-visible spectroscopies. The solid-state structures of 2 and 3 were determined by single crystal X-ray diffraction. HER studies conducted in acetonitrile with acetic acid as the proton source yield a turnover frequency (TOF) of 7700 s-1 for solutions of 1 at an overpotential of 1.27 V and a TOF of 6700 s-1 for solutions of 3 at an overpotential of 0.56 V. For both complexes, the required potential for catalysis, Ecat/2, is larger than the thermodynamic reduction potential, E1/2, indicative of a kinetic barrier attributed to intramolecular proton rearrangement. The effect is larger for solutions of 1 (+440 mV) than for solutions of 3 (+160 mV). Controlled potential coulometry studies were used to determine faradaic efficiencies of 71 and 89% for solutions of 1 and 3, respectively. For both catalysts, extensive cycling of potential under catalytic conditions results in the deposition of a film on the glassy carbon electrode surface that is active as an HER catalyst. Analysis of the film of 3 by X-ray photoelectron spectroscopy indicates the complex remains intact upon deposition. A proposed ligand-centered HER mechanism with 1 as a precatalyst to 2 is supported computationally using density functional theory (DFT). All catalytic intermediates in the mechanism were structurally and energetically characterized with the DFT/B3LYP/6-311g(d,p) in solution phase using a polarizable continuum model (PCM). The thermodynamic feasibility of the mechanism is supported by calculation of equilibrium constants or reduction potentials for each proposed step.

10.
ACS Nano ; 13(4): 4008-4017, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30957486

ABSTRACT

Pt catalysts are widely studied for the oxygen reduction reaction, but their cost and susceptibility to poisoning limit their use. A strategy to address both problems is to incorporate a second transition metal to form a bimetallic alloy; however, the durability of such catalysts can be hampered by leaching of non-noble metal components. Here, we show that random alloyed surfaces can be stabilized to achieve high durability by depositing the alloyed phase on top of intermetallic seeds using a model system with PdCu cores and PtCu shells. Specifically, random alloyed PtCu shells were deposited on PdCu seeds that were either the atomically random face-centered cubic phase (FCC A1, Fm3m) or the atomically ordered CsCl-like phase (B2, Pm3m). Precise control over crystallite size, particle shape, and composition allowed for comparison of these two core@shell PdCu@PtCu catalysts and the effects of the core phase on electrocatalytic durability. Indeed, the nanocatalyst with the intermetallic core saw only an 18% decrease in activity after stability testing (and minimal Cu leaching), whereas the nanocatalyst with the random alloy core saw a 58% decrease (and greater Cu leaching). The origin of this enhanced durability was probed by classical molecular dynamics simulations of model catalysts, with good agreement between model and experiment. Although many random alloy and intermetallic nanocatalysts have been evaluated, this study directly compares random alloy and intermetallic cores for electrocatalysis with the enhanced durability achieved with the intermetallic cores likely general to other core@shell nanocatalysts.

11.
Nat Commun ; 10(1): 1394, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30918244

ABSTRACT

Metal-oxide nanocrystals doped with aliovalent atoms can exhibit tunable infrared localized surface plasmon resonances (LSPRs). Yet, the range of dopant types and concentrations remains limited for many metal-oxide hosts, largely because of the difficulty in establishing reaction kinetics that favors dopant incorporation by using the co-thermolysis method. Here we develop cation-exchange reactions to introduce p-type dopants (Cu+, Ag+, etc.) into n-type metal-oxide nanocrystals, producing programmable LSPR redshifts due to dopant compensation. We further demonstrate that enhanced n-type doping can be realized via sequential cation-exchange reactions mediated by the Cu+ ions. Cation-exchange transformations add a new dimension to the design of plasmonic nanocrystals, allowing preformed nanocrystals to be used as templates to create compositionally diverse nanocrystals with well-defined LSPR characteristics. The ability to tailor the doping profile postsynthetically opens the door to a multitude of opportunities to deepen our understanding of the relationship between local structure and LSPR properties.

12.
Inorg Chem ; 57(20): 12671-12682, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30281295

ABSTRACT

Reaction of the readily reduced pincer ligand bis-tetrazinylpyridine, btzp, with the zerovalent metal source M(CO)3(MeCN)3 yields M(btzp)2 for M = Cr, Mo. These diamagnetic molecules show intrapincer bond lengths consistent with major charge transfer from metal to ligand, a result which is further supported by X-ray photoelectron spectroscopy. These molecules show up to five reversible outer-sphere electron transfers by cyclic voltammetry. The electronic structure of neutral M(btzp)2 is analyzed by DFT and CASSCF calculations, which reveal the degree of back-donation from the metal into pincer π* orbitals and also subtle differences in metal-ligand interaction for Mo vs Cr. Near-IR absorptions exhibited by both M(btzp)2 species originate from charge transfer among differently reduced tetrazine rings, which thus further support pincer reduction in these species.

13.
Chem Commun (Camb) ; 54(87): 12397-12399, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30328415

ABSTRACT

The amide in Cr[N(SiMe3)2]2(THF)2 is displaced by equimolar [K(18-crown-6)][naphthalene] to form the dimetal sandwich Cr2(naphthalene)2- as a radical anion paired with [K(18-crown-6)]+. Two Cr atoms in the sandwich do not form any multiple Cr/Cr bonds, and instead each interacts with one naphthalene in an η6 fashion and with the second naphthalene in an η4 connectivity mode. The naphthalene C/C distances show the effect of back donation from two chromium atoms to a greater extent than simply by 1 electron ring reduction, in comparison to the naphthalene radical anion. The SOMO of the product was established by variable temperature EPR spectroscopy, and the atom ratios and elemental purity were supported by XPS. The possible generality of the displacement of N(SiMe3)2- from a low valent metal is discussed.

14.
Chem Sci ; 9(22): 4950-4958, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29938022

ABSTRACT

The cobalt macrocycle complex [Co(DIM)Br2]+ (DIM = 2,3-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,3-diene) is an electrocatalyst for the selective reduction of nitrate to ammonia in aqueous solution. The catalyst operates over a wide pH range and with very high faradaic efficiency, albeit with large overpotential. Experimental investigations, supported by electronic structure calculations, reveal that catalysis commences when nitrate binds to the two-electron reduced species CoII(DIM-), where cobalt and the macrocycle are each reduced by a single electron. Several mechanisms for the initial reduction of nitrate to nitrite were explored computationally and found to be feasible at room temperature. The reduced DIM ligand plays an important role in these mechanisms by directly transferring a single electron to the bound nitrate substrate, activating it for further reactions. These studies further reveal that the DIM macrocycle is critical to nitrate reduction, specifically its combination of redox non-innocence, hydrogen-bonding functionality and flexibility in coordination mode.

15.
ACS Appl Mater Interfaces ; 10(25): 21356-21364, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29870226

ABSTRACT

Here, we report transfer hydrogenation of nitroarenes to aminoarenes using 2-propanol as a hydrogen source and Ag-containing magnetically recoverable catalysts based on partially reduced graphene oxide (pRGO) sheets. X-ray diffraction and X-ray photoelectron spectroscopy data demonstrated that, during the one-pot catalyst synthesis, formation of magnetite nanoparticles (NPs) is accompanied by the reduction of graphene oxide (GO) to pRGO. The formation of Ag0 NPs on top of magnetite nanoparticles does not change the pRGO structure. At the same time, the catalyst structure is further modified during the transfer hydrogenation, leading to a noticeable increase of sp2 carbons. These carbons are responsible for the adsorption of substrate and intermediates, facilitating a hydrogen transfer from Ag NPs and creating synergy between the components of the catalyst. The nitroarenes with electron withdrawing and electron donating substituents allow for excellent yields of aniline derivatives with high regio and chemoselectivity, indicating that the reaction is not disfavored by these functionalities. The versatility of the catalyst synthetic protocol was demonstrated by a synthesis of an Ru-containing graphene derivative based catalyst, also allowing for efficient transfer hydrogenation. Easy magnetic separation and stable catalyst performance in the transfer hydrogenation make this catalyst promising for future applications.

16.
ACS Omega ; 3(11): 14717-14725, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-31458148

ABSTRACT

This paper reports the development of robust Pd- and Ru-containing magnetically recoverable catalysts in a one-pot procedure using commercially available, branched polyethyleneimine (PEI) as capping and reducing agent. For both catalytic metals, ∼3 nm nanoparticles (NPs) are stabilized in the PEI shell of magnetite NPs, whose aggregation allows for prompt magnetic separation. The catalyst properties were studied in a model reaction of 4-nitrophenol hydrogenation to 4-aminophenol with NaBH4. A similar catalytic NP size allowed us to decouple the NP size impact on the catalytic performance from other parameters and to follow the influence of the catalytic metal type and amount as well as the PEI amount on the catalytic activity. The best catalytic performances, the 1.2 min-1 rate constant and the 433.2 min-1 turnover frequency, are obtained for the Ru-containing catalyst. This is discussed in terms of stability of Ru hydride facilitating the surface-hydrogen transfer and the presence of Ru4+ species on the Ru NP surface facilitating the nitro group adsorption, both leading to an increased catalyst efficiency. High catalytic activity as well as the high stability of the catalyst performance in five consecutive catalytic cycles after magnetic separation makes this catalyst promising for nitroarene hydrogenation reactions.

17.
ACS Omega ; 3(11): 16328-16337, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-31458268

ABSTRACT

Here, we report the development of monodisperse Zn-doped iron oxide nanoparticles (NPs) with different amounts of Zn (Zn x Fe3-x O4, 0 < x < 0.43) by thermal decomposition of a mixture of zinc and iron oleates. The as-synthesized NPs show a considerable fraction of wüstite (FeO) which is transformed to spinel upon 2 h oxidation of the NP reaction solutions. At any Zn doping amounts, we observed the enrichment of the NP surface with Zn2+ ions, which is enhanced at higher Zn loadings. Such a distribution of Zn2+ ions is attributed to the different thermal decomposition profiles of Zn and Fe oleates, with Fe oleate decomposing at much lower temperature than that of Zn oleate. The decomposition of Zn oleate is, in turn, catalyzed by a forming iron oxide phase. The magnetic properties were found to be strongly dependent on the Zn doping amounts, showing the saturation magnetization to decrease by 9 and 20% for x = 0.05 and 0.1, respectively. On the other hand, X-ray photoelectron spectroscopy near the Fermi level demonstrates that the Zn0.05Fe2.95O4 sample displays a more metallic character (a higher charge carrier density) than undoped iron oxide NPs, supporting its use as a spintronic material.

18.
Langmuir ; 33(51): 14709-14717, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29211482

ABSTRACT

Here, we present a controlled synthesis of Mn-doped ZnO nanoparticles (NPs) with predominantly nail-like shapes, whose formation occurs via tip-to-base-oriented attachment of initially formed nanopyramids, followed by leveling of sharp edges that lead to smooth single-crystalline "nails". This shape is prevalent in noncoordinating solvents such as octadecene and octadecane. Yet, the double bond in the former promotes oriented attachment. By contrast, Mn-doped ZnO NP synthesis in a weakly coordinating solvent, benzyl ether, results in dendritic structures because of random attachment of initial NPs. Mn-doped ZnO NPs possess a hexagonal wurtzite structure, and in the majority of cases, the NP surface is enriched with Mn, indicating a migration of Mn2+ ions to the NP surface during the NP formation. When the NP formation is carried out without the addition of octadecyl alcohol, which serves as a surfactant and a reaction initiator, large, concave pyramid dimers are formed whose attachment takes place via basal planes. UV-vis and photoluminescence spectra of these NPs confirm the utility of controlling the NP shape to tune electro-optical properties.

19.
ACS Appl Mater Interfaces ; 9(39): 34005-34014, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28910529

ABSTRACT

Here, we report on the development of novel Zn-, Zn-Cr-, and Zn-Cu-containing catalysts using magnetic silica (Fe3O4-SiO2) as the support. Transmission electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy (XPS) showed that the iron oxide nanoparticles are located in mesoporous silica pores and the magnetite (spinel) structure remains virtually unchanged despite the incorporation of Zn and Cr. According to XPS data, the Zn and Cr species are intermixed within the magnetite structure. In the case of the Zn-Cu-containing catalysts, a separate Cu2O phase was also observed along with the spinel structure. The catalytic activity of these catalysts was tested in methanol synthesis from syngas (CO + H2). The catalytic experiments showed an improved catalytic performance of Zn- and Zn-Cr-containing magnetic silicas compared to that of the ZnO-SiO2 catalyst. The best catalytic activity was obtained for the Zn-Cr-containing magnetic catalyst prepared with 1 wt % Zn and Cr each. X-ray absorption spectroscopy demonstrated the presence of oxygen vacancies near Fe and Zn in Zn-containing, and even more in Zn-Cr-containing, magnetic silica (including oxygen vacancies near Cr ions), revealing a correlation between the catalytic properties and oxygen vacancies. The easy magnetic recovery, robust synthetic procedure, and high catalytic activity make these catalysts promising for practical applications.

20.
Nanoscale ; 9(35): 13014-13024, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28832046

ABSTRACT

The recent discovery of excellent thermoelectric properties and topological surface states in SnTe-based compounds has attracted extensive attention in various research areas. Indium doped SnTe is of particular interest because, depending on the doping level, it can either generate resonant states in the bulk valence band leading to enhanced thermoelectric properties, or induce superconductivity that coexists with topological states. Here we report on the vapor deposition of In-doped SnTe nanowires and the study of their surface oxidation and thermoelectric properties. The nanowire growth is assisted by Au catalysts, and their morphologies vary as a function of substrate position and temperature. Transmission electron microscopy characterization reveals the formation of an amorphous surface in single crystalline nanowires. X-ray photoelectron spectroscopy studies suggest that the nanowire surface is composed of In2O3, SnO2, Te and TeO2 which can be readily removed by argon ion sputtering. Exposure of the cleaned nanowires to atmosphere leads to rapid oxidation of the surface within only one minute. Characterization of electrical conductivity σ, thermopower S, and thermal conductivity κ was performed on the same In-doped nanowire which shows suppressed σ and κ but enhanced S yielding an improved thermoelectric figure of merit ZT compared to the undoped SnTe.

SELECTION OF CITATIONS
SEARCH DETAIL
...