Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 18(11): 3220-5, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22334566

ABSTRACT

Novel phenylazole ligands were applied successfully in the synthesis of cyclometalated iridium(III) complexes of the general formula [Ir(phenylazole)(2)(bpy)]PF(6) (bpy=2,2'-bipyridine). All complexes were fully characterized by NMR, IR, and MS spectroscopic studies as well as by cyclic voltammetry. Three crystal structures obtained by X-ray analysis complemented the spectroscopic investigations. The excited-state lifetimes of the iridium complexes were determined and showed to be in the range of several hundred ns to multiple µs. All obtained iridium complexes were active as photosensitizers in catalytic hydrogen evolution from water in the presence of triethylamine as a sacrificial reducing agent. Applying an in situ formed iron-based water reduction catalyst derived from [HNEt(3)](+) [HFe(3)(CO)(11)](-) and tris[3,5-tris-(trifluoromethyl)-phenyl]phosphine as the ligand, [Ir(2-phenylbenz-oxazole)(2)-(bpy)]PF(6) proved to be the most efficient complex giving a quantum yield of 16% at 440 nm light irradiation.

2.
ChemSusChem ; 5(3): 530-3, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22034288

ABSTRACT

Gold standard: Au/TiO(2) catalysts, easily prepared in situ from different Au precursors and TiO(2), generate hydrogen from water/alcohol mixtures. Different alcohols, and even glucose, can serve as sacrificial reductants. The best system produces hydrogen on a liter scale, and is stable for more than two days. Deuteration studies show that proton reduction is likely the rate-limiting step in this reaction.


Subject(s)
Gold/chemistry , Hydrogen/chemistry , Metal Nanoparticles/chemistry , Methanol/chemistry , Titanium/chemistry , Catalysis , Kinetics , Microscopy, Electron, Scanning , Microscopy, Electron, Scanning Transmission
3.
Phys Chem Chem Phys ; 13(34): 15580-8, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21789326

ABSTRACT

The optically active states in a novel (terpyridine)Ru(4H-imidazole) complex displaying an unusually broad and red-shifted absorption in the visible range are investigated experimentally and theoretically. Since this property renders the complex promising for an application as sensitizer in dye-sensitized solar cells, a detailed knowledge on the correlation between features in the absorption spectrum and structural elements is indispensable in order to develop strategies for spectroscopy/theory-guided design of such molecular components. To this aim, time-dependent density functional theory calculations, including solvent effects, are employed to analyze the experimental UV-vis absorption and resonance Raman (RR) spectra of the unprotonated and protonated forms of the complex. This provides a detailed photophysical picture for a complex belonging to a novel class of Ru-polypyridine black absorbers, which can be tuned by external pH stimuli. The complex presents two absorption maxima in the visible region, which are assigned by the calculations to metal-to-ligand charge transfer (MLCT) and intra-ligand states, respectively. RR simulations are performed in resonance with both bands and are found to correctly reproduce the observed effects of protonation. Finally, the examination of the molecular orbitals and of the RR spectra for the MLCT state shows that protonation favors a charge transfer excitation to the 4H-imidazole ligand.


Subject(s)
Coordination Complexes/chemistry , Imidazoles/chemistry , Models, Theoretical , Ruthenium/chemistry , Spectrum Analysis, Raman/methods , Protons , Pyridines/chemistry
5.
Chemistry ; 17(25): 6998-7006, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21557356

ABSTRACT

The synthesis of novel, monocationic iridium(III) photosensitisers (Ir-PSs) with the general formula [Ir(III)(C^N)(2)(N^N)](+) (C^N: cyclometallating phenylpyridine ligand, N^N: neutral bidentate ligand) is described. The structures obtained were examined by cyclic voltammetry, UV/Vis and photoluminescence spectroscopy and X-ray analysis. All iridium complexes were tested for their ability as photosensitisers to promote homogeneously catalysed hydrogen generation from water. In the presence of [HNEt(3)][HFe(3)(CO)(11)] as a water-reduction catalyst (WRC) and triethylamine as a sacrificial reductant (SR), seven of the new iridium complexes showed activity. [Ir(6-iPr-bpy)(ppy)(2)]PF(6) (bpy: 2,2'-bipyridine, ppy: 2-phenylpyridine) turned out to be the most efficient photosensitiser. This complex was also tested in combination with other WRCs based on rhodium, platinum, cobalt and manganese. In all cases, significant hydrogen evolution took place. Maximum turnover numbers of 4550 for this Ir-PS and 2770 for the Fe WRC generated in situ from [HNEt(3)][HFe(3)(CO)(11)] and tris[3,5-bis(trifluoromethyl)phenyl]phosphine was obtained. These are the highest overall efficiencies for any Ir/Fe water-reduction system reported to date. The incident photon to hydrogen yield reaches 16.4% with the best system.

6.
Chemistry ; 17(23): 6425-36, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21506181

ABSTRACT

An extended study of a novel visible-light-driven water reduction system containing an iridium photosensitizer, an in situ iron(0) phosphine water reduction catalyst (WRC), and triethylamine as sacrificial reductant is described. The influences of solvent composition, ligand, ligand-to-metal ratio, and pH were studied. The use of monodentate phosphine ligands led to improved activity of the WRC. By applying a WRC generated in situ from Fe(3) (CO)(12) and tris[3,5-bis(trifluoromethyl)phenyl]phosphine (P[C(6)H(3)(CF(3))(2)](3), Fe(3)(CO)(12)/PR(3)=1:1.5), a catalyst turnover number of more than 1500 was obtained, which constitutes the highest activity reported for any Fe WRC. The maximum incident photon to hydrogen efficiency obtained was 13.4% (440 nm). It is demonstrated that the evolved H(2) flow (0.23 mmol H(2) h(-1) mg(-1) Fe(3)(CO)(12)) is sufficient to be used in polymer electrolyte membrane fuel cells, which generate electricity directly from water with visible light. Mechanistic studies by NMR spectroscopy, in situ IR spectroscopy, and DFT calculations allow for an improved understanding of the mechanism. With respect to the Fe WRC, the complex [HNEt(3)](+)[HFe(3)(CO)(11)](-) was identified as the key intermediate during the catalytic cycle, which led to light-driven hydrogen generation from water.

SELECTION OF CITATIONS
SEARCH DETAIL
...