Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 11(10): e9930, 2019 10.
Article in English | MEDLINE | ID: mdl-31476112

ABSTRACT

Therapeutic resistance is a major clinical challenge in oncology. Evidence identifies cancer stem cells (CSCs) as a driver of tumor evolution. Accordingly, the key stemness property unique to CSCs may represent a reservoir of therapeutic target to improve cancer treatment. Here, we carried out a genome-wide RNA interference screen to identify genes that regulate breast CSCs-fate (bCSC). Using an interactome/regulome analysis, we integrated screen results in a functional mapping of the CSC-related processes. This network analysis uncovered potential therapeutic targets controlling bCSC-fate. We tested a panel of 15 compounds targeting these regulators. We showed that mifepristone, salinomycin, and JQ1 represent the best anti-bCSC activity. A combination assay revealed a synergistic interaction of salinomycin/JQ1 association to deplete the bCSC population. Treatment of primary breast cancer xenografts with this combination reduced the tumor-initiating cell population and limited metastatic development. The clinical relevance of our findings was reinforced by an association between the expression of the bCSC-related networks and patient prognosis. Targeting bCSCs with salinomycin/JQ1 combination provides the basis for a new therapeutic approach in the treatment of breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/physiopathology , Drug Discovery/methods , Genetic Testing/methods , Genome-Wide Association Study/methods , Neoplastic Stem Cells/physiology , RNA Interference , Antineoplastic Agents/pharmacology , Female , Gene Regulatory Networks , Humans , Protein Interaction Maps , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...