Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 20(11): 111215, 2015 Nov.
Article in English | MEDLINE | ID: mdl-30592593

ABSTRACT

A coherence-controlled holographic microscope (CCHM) was developed particularly for quantitative phase imaging and measurement of live cell dynamics, which is the proper subject of digital holographic microscopy (DHM). CCHM in low-coherence mode extends DHM in the study of living cells. However, this advantage is compensated by sensitivity of the system to easily become misaligned, which is a serious hindrance to wanted performance. Therefore, it became clear that introduction of a self-correcting system is inevitable. Accordingly, we had to devise a theory of a suitable control and design an automated alignment system for CCHM. The modulus of the reconstructed holographic signal was identified as a significant variable for guiding the alignment procedures. From this, we derived the original basic realignment three-dimensional algorithm, which encompasses a unique set of procedures for automated alignment that contains processes for initial and advanced alignment as well as long-term maintenance of microscope tuning. All of these procedures were applied to a functioning microscope and the tested processes were successfully validated. Finally, in such a way, CCHM is enabled to substantially contribute to study of biology, particularly of cancer cells in vitro.

2.
Opt Express ; 21(12): 14747-62, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23787662

ABSTRACT

Coherence-controlled holographic microscope (CCHM) combines off-axis holography and an achromatic grating interferometer allowing for the use of light sources of arbitrary degree of temporal and spatial coherence. This results in coherence gating and strong suppression of coherent noise and parasitic interferences enabling CCHM to reach high phase measurement accuracy and imaging quality. The achievable lateral resolution reaches performance of conventional widefield microscopes, which allows resolving up to twice smaller details when compared to typical off-axis setups. Imaging characteristics can be controlled arbitrarily by coherence between two extremes: fully coherent holography and confocal-like incoherent holography. The basic setup parameters are derived and described in detail and experimental validations of imaging characteristics are demonstrated.


Subject(s)
Holography/instrumentation , Image Enhancement/methods , Imaging, Three-Dimensional/instrumentation , Interferometry/instrumentation , Lighting/instrumentation , Microscopy/instrumentation , Tomography, Optical Coherence/instrumentation , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...