Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Dent Res ; 10(3): e875, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798121

ABSTRACT

BACKGROUND: The bone regeneration therapy is often used in patients with inadequate bone support for implants, particularly following tooth extractions. Xenografts derived from animal tissues are effective bone reconstructive options that resist resorption and pose a low risk of transmitting disease. Therefore, these implants may be a good option for enhancing and stabilizing maxillary sinuses. The purpose of this study was to compare two xenografts, Bone+B® and InterOss®, for the reconstruction of rabbit calvaria defects. METHODS AND MATERIALS: The study involved seven male New Zealand white rabbits. In the surgical procedure, 21 spots were created on both sides of the midline calvarium by creating three 8-millimeter defects. A control group was used, as well as two treatment groups utilizing Bone+B® Grafts and InterOss® Grafts. After 3 months, the rabbits were euthanized, followed by pathological evaluation. Analysis of these samples focused on bone formation, xenograft remaining material, and inflammation levels, using Adobe Photoshop CS 8.0 and SPSS version 24. RESULTS: With the application of Bone+B® graft, bone formation ranged from 32% to 45%, with a mean of 37.80% (±5.63), and the remaining material ranged from 28% to 37%, with a mean of 32.60% (±3.65). Using InterOss® grafts, bone formation was 61% to 75%, the mean was 65.83% (±4.75), and the remaining material was 9% to 18%, with a mean of 13.17% (±3.06). The bone formation in the control group ranged from 10% to 25%, with a mean of 17.17% (±6.11). InterOss® had lower inflammation levels than other groups, but the difference was not statistically significant (p > .05). CONCLUSION: InterOss® bone powder is the best option for maxillofacial surgery and bone reconstruction. This is due to more bone formation, less remaining material, and a lower inflammation level. Compared to the control group, Bone+B® improves healing and bone quality, thus making it an alternative to InterOss®.


Subject(s)
Bone Regeneration , Bone Substitutes , Bone Transplantation , Heterografts , Skull , Animals , Rabbits , Skull/surgery , Skull/pathology , Male , Bone Transplantation/methods , Bone Substitutes/pharmacology , Osteogenesis
2.
Cancer Rep (Hoboken) ; 7(2): e1963, 2024 02.
Article in English | MEDLINE | ID: mdl-38109851

ABSTRACT

BACKGROUND: Recently, immunotherapy has become very hopeful for cancer therapy. Cancer treatment through immunotherapy has excellent specificity and less toxicity than conventional chemoradiotherapy. Pathogens have been used in cancer immunotherapy for a long time. The current study aims to evaluate the possibility of Toxoplasma gondii (T. gondii) as a probable treatment for cancers such as melanoma, breast, ovarian, lung, and pancreatic cancer. RECENT FINDINGS: Nonreplicating type I uracil auxotrophic mutants of T. gondii can stimulate immune responses against tumors by reverse immunosuppression at the cellular level. T. gondii can be utilized to research T helper 1 (Th1) cell immunity in intracellular infections. Avirulent T. gondii uracil auxotroph vaccine can change the tumor's immunosuppression and improve the production of type 1 helper cell cytokines, i.e., Interferon-gamma (IFN-γ) and Interleukin-12 (IL-12) and activate tumor-related Cluster of Differentiation 8 (CD8+) T cells to identify and destroy cancer cells. The T. gondii profilin protein, along with T. gondii secreted proteins, have been found to exhibit promising properties in the treatment of various cancers. These proteins are being studied for their potential to inhibit tumor growth and enhance the effectiveness of cancer therapies. Their unique mechanisms of action make them valuable candidates for targeted interventions in ovarian cancer, breast cancer, pancreatic cancer, melanoma, and lung cancer treatments. CONCLUSION: In summary, the study underscores the significant potential of harnessing T. gondii, including its diverse array of proteins and antigens, particularly in its avirulent form, as a groundbreaking approach in cancer immunotherapy.


Subject(s)
Melanoma , Toxoplasma , Humans , Cytokines , Immunosuppression Therapy , Uracil
SELECTION OF CITATIONS
SEARCH DETAIL
...